niversité de Lausanne **HEC Lausanne**

An Analytical Framework for Public Debt Management 3rd PDM conference, World Bank.

Jean-Paul Renne

3-4 October 2024

The paper in a nutshell

Objective:

- To propose an analytical framework to assess cost/risk performances of debt issuance strategies.
- Opens the door to optimal issuance strategy design.

Approach:

- Computation of cost & risk measures based on a stochastic macro-fin. model.
- In the model:
 - Government decides on debt maturity and indexation.
 - Default is possible (fiscal limits).
 - Government issuance choices affect bond prices.

Findings:

- Optimal strategies depend on inflation/GDP/surplus dynamics.
- Performances of nominal debt (versus inflation-linked) depends on the predominance of supply/demand shocks in the economy.
- GDP indexation too costly to be part of optimal strategies.

Literature on optimal public debt management

Tax smoothing:

Optimal to issue bonds linked to government expenditure to smooth taxes over time (Barro, 1979). Barro (1995): substantial moral hazard. Angeletos (2002): potential in conventional bonds to achieve tax smoothing. Faraglia et al. (2010): recommendations from this approach are usually unrealistic and non-robust.

Debt indexation:

Bohn (1990) and Barro (2003): optimal inflation indexation given tax-smoothing objective. Schmid et al. (2023): issuing ILBs prevents future govts from monetizing debt ex-post. Froot et al. (1989), Shiller (1998), Kamstra and Shiller (2009, 2010), Borensztein and Mauro (2004), Pienkowski (2017): GDP indexation mitigate the adverse effects of negative economic growth.

Credit risk:

Missale (1997, 2012): fiscal insurance is constrained by the necessity to maintain credibility. Practitioners' simulation approaches abstract from potential sovereign credit risk (e.g., Bergstrom et al., 2002; Pick and Anthony, 2008; Bolder and Deeley, 2011; Balibek and Memis, 2012; Bernaschi et al., 2019).

 Originality of the present study: Balance between structural/empirical aspects. Performance metrics capable of integrating both tax-smoothing and debt sustainability objectives (e.g., upper percentiles of the debt-to-GDP distribution).

Paper	Default	Model and optimality criteria	Debt. Instr.
Greenwood et al. (2015)	-	3-period model. Monetary services from holding riskless short-term securities. No inflation. Criterion: Social welfare.	TS-R
Missale and Giavazzi (2005)	_	Simple (i.i.d.) dynamics of inflation, output growth and exchange rate. Criterion: quantiles of debt-to-GDP ratio.	ST-RNX
Debortoli et al. (2017)	-	Stochast. equilib. model with fiscal policy distortions. Govt cannot commit to fiscal policy. Criterion: social welfare.	ST-N, GD-N
Missale and Blanchard (1994)	-	Study the gov temptation to inflate debt away. Loss function including tax rate	ST-N, LT-N
Drudi and Giordano (2000)	\checkmark	3-period model. Criterion: ad-hoc loss function involving tax rate, inflation, and default costs.	3-period model, ST-RNX, LT-RNX
Angeletos (2002)	_	Stochastic production economy with distortionary taxes. Incomplete markets. Criterion: Social welfare.	ST-R and P-R
Buera and Nicolini (2004)	_	Stochastic production economy with distortionary taxes. Incomplete markets. Criterion: Social welfare.	TS-R
Faraglia et al. (2010)	-	Stochastic production economy with distortionary taxes. Incomplete markets. Criterion: Social welfare.	TS-N
Bhandari et al. (2017)	_	Stochastic production economy with distortionary taxes. Criterion: Social welfare	ST-R, P-R
Bigio et al. (2023)	-	Deterministic model. The government faces liquidity costs during bond auctions; the model also features preferred- habitat investors. Criterion: social welfare.	TS-N
de Lannoy et al. (2022)	_	General stoch. macro-fi models. Criterion: Social welfare	TS-R
Bocola and Dovis (2019)	\checkmark	Small-scale macro-finance model à <i>la</i> Cole and Kehoe (2000). Decay coupon rate is time-varying (endogenous). Criterion: Social welfare.	GD-N

Overview of modeling ingredients

Government issuances:

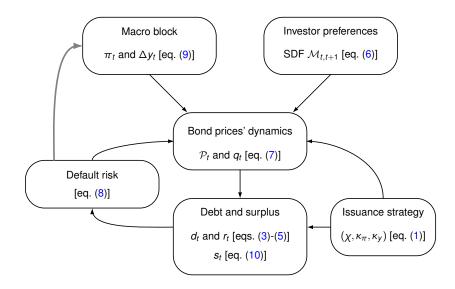
Perpetuities with indexed and geometrically-decaying coupons.

Probability of default:

> 0 when debt-to-GDP larger than fiscal limit.

Stochastic discount factor:

parametric (Epstein-Zin in application).

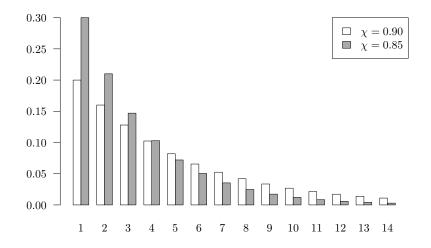

Macro dynamics:

Inflation, GDP growth, and budget surplus depend on regimes (Markov chain); budget surplus also affected by Gaussian shocks.

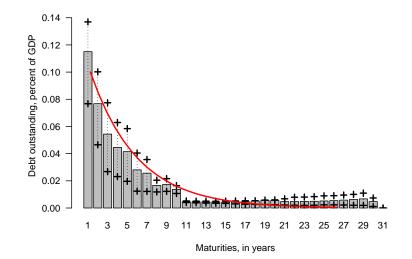
Feedback mechanism:

GDP growth falls upon sovereign default.

Figure: Schematic representation of the model


Perpetuities with indexed and geom.-decaying coupons

- The government issues perpetuities with geometrically-decaying coupons.
- ⇒ Geometrically-decaying coupons = standard in macro literature (e.g., Leland, 1998; Woodford, 2001; Hatchondo and Martinez, 2009).
- \Rightarrow Present paper: Extension to accommodate indexation (inflation and/or GDP).
- **Payoff of perpetuities (on date** t + h, and in dollars):


$$\Lambda_{t+h} = \underbrace{\chi^{h-1}}_{\text{decay}} \times \underbrace{[1 \times (1 - \mathcal{D}_{t+h}) + RR \times \mathcal{D}_{t+h}]}_{1 \text{ if no defaut and } RR \text{ otherwise } composite index} \qquad (1)$$

- $(\kappa_{\pi} = 0, \kappa_{y} = 0) = \text{nominal bond}; \quad (\kappa_{\pi} = 1, \kappa_{y} = 0) = \text{TIPS}; \\ (\kappa_{\pi} = 1, \kappa_{y} = 1) = \text{GDP-indexed bond}.$
- Perpetuity price (in dollars): $\Pi_t^{\kappa_{\pi}} Y_t^{\kappa_{y}} \mathcal{P}_t = \sum_{i=1}^{\infty} \mathbb{E}_t(\mathcal{M}_{t,t+h}\Lambda_{t+h})$. Hence \mathcal{P}_t = perpetuity price expressed in units of composite index.
- Perpetuity's yield-to-maturity *q*_t (internal rate of return) defined through:

$$\mathcal{P}_{t} = \sum_{h=1}^{\infty} \frac{\chi^{h-1}}{(1+q_{t})^{h}} = \frac{1}{1+q_{t}-\chi}.$$
(2)

Note: Payoffs (in dollars) associated with a nominal perpetuity with geometrically-decaying coupons. Two values of χ (decay rate) are considered.

Note: Average redemption schedule (2000-2023). Crosses indicate 25th and 75th percentiles. The red line shows repayment schedule associated with a perpetuity featuring geometrically-decaying payoffs.

Jean-Paul Renne

An Analytical Framework for Public Debt Managemen

In this context, standard dynamics of debt-to-GDP ratio d_t :

$$d_{t+1} = rac{1}{\pi_{t+1} + \Delta y_{t+1}} d_t - s_{t+1} + r_{t+1},$$

where accounting convention = nominal valuation of debt securities.

 \blacksquare *r*_{t+1}, the debt service (in percent of GDP), comprises two components:

debt indexation + pre-indexation debt service (\underline{r}_t) .

■ Units of the two components depend on κ_{π} and κ_{y} . For instance:

Type of perpetuity	Debt indexation	Pre-index. debt service		
	is homogeneous to:	is homogeneous to:		
$(\kappa_{\pi} = 0, \kappa_{y} = 0) = \text{nominal}$	_	nominal rate		
$(\kappa_{\pi} = 1, \kappa_{y} = 0) = TIPS$	inflation	real rate		
$(\kappa_{\pi}=1,\kappa_{y}=1)=GDP-L$	nominal GDP growth	real rate "-" GDP growth		

Proposition 1 - Debt dynamics

In the absence of default until date t + 1, we have:

$$d_{t+1} = \exp(-\pi_{t+1} - \Delta y_{t+1})d_t - s_{t+1} + r_{t+1}$$
(3)

$$r_{t+1} = \underbrace{(\exp(\kappa_{\pi}\pi_{t+1} + \kappa_{y}\Delta y_{t+1}) - 1)\exp(-\pi_{t+1} - \Delta y_{t+1})d_{t}}_{\text{debt indexation } (\zeta_{t+1} - \zeta_{t+1})d_{t}} + r_{t+1} (4)$$

$$\underline{r}_{t+1} = \zeta_{t+1}q(z_{t}) \underbrace{(d_{t} - \chi\zeta_{t}d_{t-1})}_{\text{dete-t issuances}} + \zeta_{t+1}\chi r_{t}, \qquad (5)$$

where

$$\begin{aligned} \zeta_t &= \exp[(\kappa_{\pi} - 1)\pi_t + (\kappa_y - 1)\Delta y_t] \\ \zeta_t &= \exp(-\pi_t - \Delta y_t). \end{aligned}$$

Flexible general specification of the stochastic discount factor (SDF):

$$\mathcal{M}_{t,t+1}^{r} = \exp(f^{r}(z_{t}, z_{t+1}) + \nu^{r}(z_{t+1})\Delta \mathcal{D}_{t+1}),$$
(6)

where z_t is the state vector (includes d_t , r_t , π_t , Δy_t).

Empirical application:

Specification of f^r and ν^r based on Epstein-Zin preferences (Bansal and Yaron, 2004; Piazzesi and Schneider, 2007; Bansal and Shaliastovich, 2013). Only two parameters to calibrate: RRA and IES. Flexible general specification of the stochastic discount factor (SDF):

$$\mathcal{M}_{t,t+1}^{r} = \exp(f^{r}(z_{t}, z_{t+1}) + \nu^{r}(z_{t+1})\Delta \mathcal{D}_{t+1}),$$

where z_t is the state vector (includes d_t , r_t , π_t , Δy_t).

Empirical application:

Specification of f^r and ν^r based on Epstein-Zin preferences (Bansal and Yaron, 2004; Piazzesi and Schneider, 2007; Bansal and Shaliastovich, 2013).

Only two parameters to calibrate: RRA and IES.

Proposition 2 - Perpetuity pricing

Function *q* satisfies the following fixed-point problem:

$$q(z_t) = \chi - 1 + \tag{7}$$

$$\overline{\mathbb{E}_{t}\left(e^{f(z_{t},z_{t+1})}\left[\mathcal{D}_{t+1}\left(RRe^{\nu^{r}(z_{t+1})}(1+\chi\underline{\mathcal{P}}(z_{t+1}))-\frac{1+q(z_{t+1})}{1+q(z_{t+1})-\chi}\right)+\frac{1+q(z_{t+1})}{1+q(z_{t+1})-\chi}\right]\right)},$$

where $\underline{\mathcal{P}}$ is the post-default price of the perpetuity, that is:

$$\underline{\mathcal{P}}(z_t) = \mathbb{E}\left(\left|\sum_{h=1}^{\infty} \chi^{h-1} \mathcal{M}_{t,t+h}\right| \mathcal{D}_t = 1, z_t\right).$$

(6)

Probability of default

■ In the spirit of Pallara and Renne (2024), conditional probability of default:

$$\mathbb{P}(\mathcal{D}_{t+1} = 1 | \mathcal{D}_t = 0, z_t) = 1 - \exp(-\underbrace{\max[0, \alpha(d_t - d^*)]}_{=\underline{\lambda}_{t+1}, \text{ default intensity}}),$$
(8)

where d^* = "fiscal limit".

$$\Rightarrow PD_{t+1} \approx \max[0, \alpha(d_t - d^*)].$$

- Large α (and $\nu_t = 0$) \Rightarrow "strict" fiscal limit (default as soon as $d_t > d^*$).
- Small α (and $\nu_t = 0$) \Rightarrow "soft" fiscal limit.

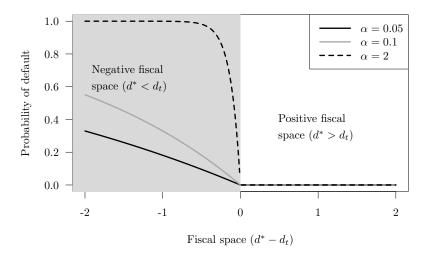


Figure: Probability of default as a function of fiscal space

Macro dynamics (and default feedback effects)

Inflation and GDP growth:

$$\pi_t = \mu'_{\pi} m_t + \nu_{\pi} \Delta \mathcal{D}_t, \quad \text{and} \quad \Delta y_t = \mu'_y m_t + \nu_y \Delta \mathcal{D}_t,$$
 (9)

where m_t is a selection vector of dimension $n_m \times 1$. Dynamics:

$$\mathbb{P}(m_{t+1} = e_j | m_t = e_i) = \Omega_{i,j},$$

 Ω = matrix of transition probabilities. ($e_i = j^{th}$ column of $m \times m$ identity matrix.)

- v_{π} and v_{y} capture feedback effects of sovereign default on inflation and GDP.
- Primary budget surplus:

$$s_t = s^* + \underbrace{\beta \times d_{t-1}}_{\text{stabilization component}} + \underbrace{\eta_t}_{\text{risk component}}$$
 (10)

where the term βd_{t-1} (with $\beta > 0$) = government's desire to stabilize the debt (as in, e.g., Bohn, 1998; Ghosh et al., 2013), and where:

$$\eta_{t} = \underbrace{\varepsilon_{t}}_{\mathcal{N}(0,\sigma^{2})} + \underbrace{\mu_{\eta}'(m_{t} - \mathbb{E}_{t-1}(m_{t}))}_{\text{links with macro innovations}}$$

Other bonds

In this economy, one can price any other asset whose payoffs depend on z_t (even if not issued by the government).

Proposition 3

The prices of zero-coupon bonds can be computed recursively using:

$$\mathcal{B}_{h}(z_{t}) = \mathbb{E}\Big[\exp(f(z_{t}, z_{t+1}))\mathcal{B}_{h-1}(z_{t+1}) + (11) \\ \mathcal{D}_{t+1}\exp(f(z_{t}, z_{t+1}))\left\{RRe^{\nu(z_{t+1})}\underline{\mathcal{B}}_{h-1}(z_{t+1}) - \mathcal{B}_{h-1}(z_{t+1})\right\}\Big|\mathcal{D}_{t} = 0, z_{t}\Big],$$

starting from $\mathcal{B}_0(x) = 1$ for any state x. In (11), $\underline{\mathcal{B}}_h(z_t)$ denotes the price of a postdefault zero-coupon bond, i.e.:

$$\underline{\mathcal{B}}_h(z_t) = \mathbb{E}(\mathcal{M}_{t,t+h}|\mathcal{D}_t = 1, z_t).$$

Cost and Risk measures

Average debt-to-GDP ratio and average debt service

Both criteria reflect the funding costs associated with the different strategies.

Debt volatility

Two measures: $\sqrt{\mathbb{V}ar(d_t)}$ and $\sqrt{\mathbb{V}ar(\Delta d_t)}$.

Upper tail of the debt-to-GDP distribution

95th percentile of the debt-to-GDP distribution; characterizes right tail of the debt distribution.

Debt service volatility

Measured by $\sqrt{\mathbb{V}ar(r_t)}$.

Credit risk

Measured by the average 10-year probability of default. Formally: $\mathbb{E}(\mathbb{P}(\mathcal{D}_{t+10}|\mathcal{D}_t = 0, z_t)).$

Credit-risk costs

Measured by the average 10-year credit spread, that is formally given by $\mathbb{E}(y_{t,10} - y_{t,10}^*)$, where $y_{t,10}$ is the govt 10-year nominal yield and $y_{t,10}^*$ is the yield of an equivalent non-defaultable bond.

Insights from stylized economies: demand/supply-driven

- Relative importance of demand/supply shocks shapes term structure of bond returns (e.g., Rudebusch and Swanson, 2012; Campbell et al., 2017; Bekaert et al., 2021).
- Two synthetic economies:

Economy "D": demand shocks (+ correlation between inflat. and GDP growth). Economy "S": supply shocks.

Regime	μ_{π}		μ_y			
	D S					
1	0.000	0.060	0.000	0.800	0.200	0.000
2	0.030	0.030	0.020	0.100	0.800	0.100
3	0.060	0.000	0.040	0.000	0.200	0.800

Table: Stylized models: parameterizations

Notes: This table shows the parameterizations of the stylized demand/supply models. We also have $\alpha = 0.10$, $\beta = 0.10$, $\gamma = 10$, $\beta = 0.10$, $d^* = 1.00$, $s^* = -0.08$, $\sigma_{\nu} = 0.10$, $\nu_{\pi} = 0.00$, RR = 0.50.

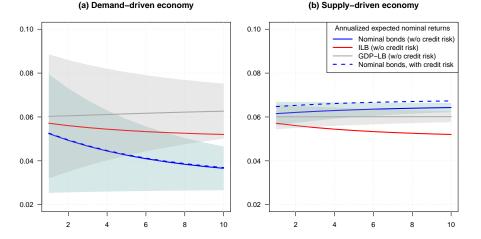


Figure: Term structures of expected returns in the two synthetic economies

	$\mathbb{E}(d)$	$\sqrt{\mathbb{V}(d)}$	$q_{95}(d)$	$\mathbb{E}(r)$	$\sqrt{\mathbb{V}(r)}$	$\sqrt{\mathbb{V}(\Delta d)}$	$\mathbb{E}(PD)$	$\mathbb{E}(spd)$
Coupon decay r	ate $\chi = 0.2$							
	Demand-dr	iven economy (;	γ = 0.2)					
Nominal	85.94	8.26	98.05	4.18	1.82	3.01	0.94	6.98
ILB	89.78	6.48	98.57	4.94	2.45	2.35	1.28	7.44
GDP-LB	94.58	5.55	99.97	5.65	3.14	2.38	2.30	11.59
	Supply-driv	en economy (χ	= 0.2)					
Nominal	97.18	7.49	107.40	6.08	0.77	2.39	3.58	17.18
ILB	89.79	6.50	98.59	5.04	1.42	2.35	1.28	7.46
GDP-LB	94.97	5.24	100.01	5.77	0.76	2.36	2.38	11.99
Coupon decay r	ate $\chi = 0.9$							
	Demand-dr	iven economy (;	γ = 0.9)					
Nominal	76.52	11.76	93.30	2.82	0.36	3.03	0.44	3.78
ILB	84.71	8.00	96.03	4.16	1.64	2.33	0.73	4.64
GDP-LB	94.38	5.94	100.95	5.68	3.21	2.38	2.31	11.56
	Supply-driv	en economy (x	= 0.9)					
Nominal	100.96	8.18	112.55	6.63	0.65	2.28	5.38	25.31
ILB	85.25	8.48	98.14	4.36	1.95	2.33	0.90	5.68
GDP-LB	94.36	5.67	100.40	5.72	0.73	2.36	2.26	11.31

Table: Performances of debt issuance strategies in stylized versions of	the model, $\mu_{\eta} = 0 \times \mu_{\gamma}$ and $\nu_{\gamma} = 0$
---	--

Notes: This table shows performance metrics associated with three different debt issuance strategies; each strategy consists in issuing a given type of perpetuities: a nominal perpetuity ($\kappa_{\pi} = 0$ and $\kappa_{y} = 0$), an inflation-indexed perpetuity nominal ($\kappa_{\pi} = 1$ and $\kappa_{y} = 0$). An a GDP-indexed perpetuity nominal ($\kappa_{\pi} = 1$ and $\kappa_{y} = 0$). We consider two different values of χ (the higher χ , the higher the average debt maturity). '*d* denotes the debt-to-GDP ratio. '*r* denotes the debt service, including debt indexation (in percent) of GDP). ' $\sqrt{V(x)}$ ' corresponds to the standard deviation of variable χ ; '*PD* stands for '10-year probability of default (expressed in percent); '*spd*' stands for '10-year credit spread' (expressed in basis point), ' $\frac{\sigma_{g}}{\sigma_{g}}(d)$ ' is the 95th percentile of the debt-to-GDP distribution.

Model calibrated to US economy

- Some parameters taken from the literature. Examples:
 - v_y set to -5% (Mendoza and Yue, 2012; Reinhart and Rogoff, 2011).
 - Coefficient of RRA set to 10 (Bansal and Yaron, 2004).
 - 0.5 elasticity of surplus to output, i.e., $\mu_{\eta} = 0.5 \times \mu_{y}$ (van den Noord, 2000).
- Core step of the calibration process: Π , μ_{π} , and μ_{z} . Equilibrium model \Rightarrow critical importance of macro dynamics to shape YC. Estimation approach combines fit of *fluctuations* and *average* values of yields.
- \Rightarrow Denoting the vector of parameters to be estimated by Θ :

$$\hat{\Theta} = \underset{\Theta}{\operatorname{argmin}} - \log \mathcal{L}(\Theta) + d(\Theta),$$

where $\log \mathcal{L}(\Theta)$ is the log-likelihood function and $d(\Theta)$ is a measure of the distance between model-implied and targeted yield moments.

■ 5 regimes. Estimation period: 1970-2023.

param. table fit of yield time series

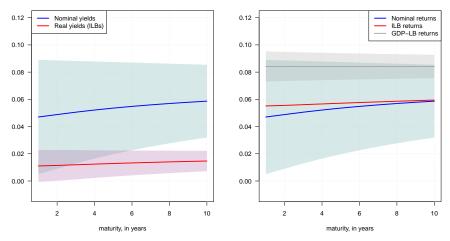
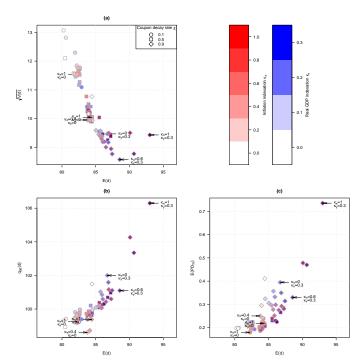

Moment	Model	Target
Avg. slope of nominal yield curve (1y-10y)	0.012	0.011
Avg. 10-year nominal yield	0.059	0.060
Avg. slope of real yield curve (2y-10y)	0.003	0.009
Avg. 10-year real yield	0.015	0.014
Avg. inflation	0.044	0.039
Avg. real GDP growth	0.029	0.027
Std dev. of 10-year nominal yield	0.027	0.030
Std dev. of 10-year real yield	0.007	0.013
Avg. breakeven	0.000	0.000
Notes: This table compares model-implied wit	h targeted moments.	The distance

Table: Model-implied versus targeted moments

Notes: This table compares model-implied with targeted moments. The distance between these moments is part of the loss function that is minimized to estimate the components of μ_{π} , μ_{y} , and Ω . See Subsection **??** for more details.

Model-implied yield curves and returns

(a) Nominal and real yield curves


(b) Nominal bond returns

Model-implied performances of selected strategies

$(\chi, \kappa_{\pi}, \kappa_{y})$	$\mathbb{E}(d)$	$\sqrt{\mathbb{V}(d)}$	q ₉₅ (d)	$\mathbb{E}(r)$	$\sqrt{\mathbb{V}(r)}$	$\sqrt{\mathbb{V}(\Delta d)}$	$\mathbb{E}(PD)$	E(spd)
(0.1, 0.0, 0.0)	80.25	13.07	99.31	3.97	3.73	7.52	0.20	9.08
(0.1, 0.0, 0.3)	82.91	11.09	99.39	4.75	3.22	6.98	0.19	5.94
(0.1, 1.0, 0.0)	82.22	11.54	99.26	4.70	3.36	6.96	0.18	4.68
(0.1, 1.0, 0.3)	86.22	9.20	100.30	5.69	2.80	6.18	0.22	4.30
(0.9, 0.0, 0.0)	84.44	10.77	101.49	4.97	1.91	8.51	0.41	23.03
(0.9, 0.0, 0.3)	86.71	9.47	102.00	5.57	1.85	7.42	0.39	17.14
(0.9, 1.0, 0.0)	84.40	10.05	99.38	5.04	2.68	7.21	0.22	7.66
(0.9, 1.0, 0.3)	93.01	9.44	106.30	7.41	2.99	6.10	0.73	16.87
(0.9, 0.6, 0.3)	88.55	8.58	101.10	6.10	2.23	6.46	0.33	10.87
(0.9, 0.4, 0.0)	83.77	9.96	98.61	4.90	2.09	7.49	0.25	13.49
(0.1, 1.0, 0.0)	82.22	11.54	99.26	4.70	3.36	6.96	0.18	4.68

Table: Performances of debt issuance strategies in the calibrated model

Notes: This table shows performance metrics associated with different debt issuance strategies characterized by the issuance of perpetuities of different durations (captured by the coupon decay rate χ), a coefficient of indexation to inflation κ_{π} and a coefficient of indexation to real GDP κ_y . The model is the one whose parameterization is reported in Table 5. '*d*' denotes the debt-to-GDP ratio. '*r*' denotes the debt service, including debt indexation (in percent of GDP). ' $\sqrt{\mathbb{V}(x)}$ ' corresponds to the standard deviation of variable *x*; '*PD*' stands for '10-year probability of default' (expressed in percent); '*spd*' stands for '10-year credit spread' (expressed in basis point), '*q*₉₅(*d*)' is the 95th percentile of the debt-to-GDP distribution. The last three rows show the performances of the strategies implying the lowest $\sqrt{\mathbb{V}(d)}$, *q*₉₅(*d*), and $\mathbb{E}(PD)$, respectively.

Concluding remarks

- This paper proposes a framework to analyze public debt management.
- Stochastic macro-finance equilibrium model where govt decides on maturity and debt indexation. Moreover, govt faces fiscal limit.
- Endogenous bond prices.
- Quasi analytical solutions; no need for Monte-Carlo simulations.
- Issuance Cost/risk performances of issuance strategies.
- Empirical application on U.S. data.
- Replication package (in R) available at https://github.com/jrenne/PDMAnalyt.

Concluding remarks

- This paper proposes a framework to analyze public debt management.
- Stochastic macro-finance equilibrium model where govt decides on maturity and debt indexation. Moreover, govt faces fiscal limit.
- Endogenous bond prices.
- Quasi analytical solutions; no need for Monte-Carlo simulations.
- Issuance Cost/risk performances of issuance strategies.
- Empirical application on U.S. data.
- Replication package (in R) available at https://github.com/jrenne/PDMAnalyt.

Thanks!

References I

- Angeletos, G.-M. (2002). Fiscal Policy with Noncontingent Debt and the Optimal Maturity Structure. The Quarterly Journal of Economics, 117(3):1105–1131.
- Balibek, E. and Memis, H. A. (2012). Turkish Treasury Simulation Model for Debt Strategy Analysis. Policy Research Working Paper Series 6091, The World Bank.
- Bansal, R. and Shaliastovich, I. (2013). A Long-Run Risks Explanation of Predictability Puzzles in Bond and Currency Markets. *Review of Financial Studies*, 26(1):1–33.
- Bansal, R. and Yaron, A. (2004). Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles. Journal of Finance, 59:1481–1509.
- Barro, R. (2003). Optimal Management of Indexed and Nominal Debt. CEMA Working Papers 496, China Economics and Management Academy, Central University of Finance and Economics.
- Barro, R. J. (1979). On the Determination of the Public Debt. Journal of Political Economy, 87(5):940-971.
- Barro, R. J. (1995). Optimal Debt Management. Working Paper 5327, National Bureau of Economic Research.
- Bekaert, G., Engstrom, E., and Ermolov, A. (2021). Macro Risks and the Term Structure of Interest Rates. Journal of Financial Economics, 141(2):479–504.
- Bergstrom, P., Holmlund, A., and Lindberg, S. (2002). The SNDO's Simulation Model for Government Debt Analysis. SNDO Working Paper, Swedish National Debt Office.
- Bernaschi, M., Morea, R., Sarno, L., Tesseri, F., Verani, F., and Vergni, D. (2019). An Integrated Approach to Cost-Risk Analysis in Public Debt . Technical report, Dipartemento del Tesoro.
- Bhandari, A., Evans, D., Golosov, M., and Sargent, T. J. (2017). Fiscal Policy and Debt Management with Incomplete Markets. The Quarterly Journal of Economics, 132(2):617–663.
- Bigio, S., Nuño, G., and Passadore, J. (2023). Debt-Maturity Management with Liquidity Costs. Journal of Political Economy Macroeconomics, 1(1):119–190.
- Bocola, L. and Dovis, A. (2019). Self-Fulfilling Debt Crises: A Quantitative Analysis. American Economic Review, 109(12):4343-77.

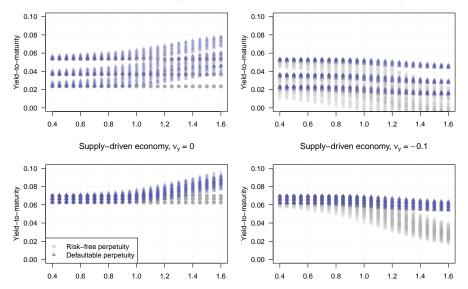
Bohn, H. (1990). Tax Smoothing with Financial Instruments. The American Economic Review, 80(5):1217-1230.

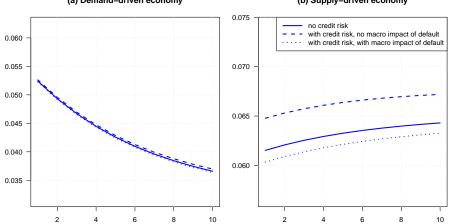
Bohn, H. (1998). The Behavior of U.S. Public Debt and Deficits. Quarterly Journal of Economics, 113(3):949-963.

References II

- Bolder, D. J. and Deeley, S. (2011). The Canadian Debt-Strategy Model: An Overview of the Principal Elements. Bank of Canada Staff Discussion Paper 2011-03, Bank of Canada.
- Borensztein, E. and Mauro, P. (2004). The Case for GDP-Indexed Bonds. Economic Policy, 19(38):165-216.
- Buera, F. and Nicolini, J. P. (2004). Optimal Maturity of Government Debt without State Contingent Bonds. Journal of Monetary Economics, 51(3):531–554.
- Campbell, J. Y., Sunderam, A., and Viceira, L. M. (2017). Inflation Bets or Deflation Hedges? The Changing Risks of Nominal Bonds. Critical Finance Review, 6(2):263–301.
- Cole, H. L. and Kehoe, T. J. (2000). Self-Fulfilling Debt Crises. The Review of Economic Studies, 67(1):91–116.
- de Lannoy, L. R. A., Bhandari, A., Evans, D., Golosov, M., and Sargent, T. J. (2022). Managing Public Portfolios. NBER Working Papers 30501, National Bureau of Economic Research, Inc.
- Debortoli, D., Nunes, R., and Yared, P. (2017). Optimal Time-Consistent Government Debt Maturity. The Quarterly Journal of Economics, 132(1):55–102.
- Drudi, F. and Giordano, R. (2000). Default Risk and Optimal Debt Management. Journal of Banking & Finance, 24(6):861-891.
- Faraglia, E., Marcet, A., and Scott, A. (2010). In Search of a Theory of Debt Management. Journal of Monetary Economics, 57(7):821–836.
- Froot, K. A., Scharfstein, D. S., and Stein, J. C. (1989). LDC Debt: Forgiveness, Indexation, and Investment Incentives. The Journal of Finance, 44(5):1335–1350.
- Ghosh, A., Kim, J. I., Mendoza, E., Ostry, J., and Qureshi, M. (2013). Fiscal Fatigue, Fiscal Space and Debt Sustainability in Advanced Economies. *The Economic Journal*, 123(566):F4–F30.
- Greenwood, R., Hanson, S. G., and Stein, J. C. (2015). A Comparative-Advantage Approach to Government Debt Maturity. The Journal of Finance, 70(4):1683–1722.
- Hatchondo, J. C. and Martinez, L. (2009). Long-Duration Bonds and Sovereign Defaults. Journal of International Economics, 79(1):117–125.

References III


- Kamstra, M. J. and Shiller, R. J. (2009). The Case for Trills: Giving the People and Their Pension Funds a Stake in the Wealth of the Nation. Cowles Foundation Discussion Papers 1717, Cowles Foundation for Research in Economics, Yale University.
- Kamstra, M. J. and Shiller, R. J. (2010). Trills Instead of T-Bills: It's Time to Replace Part of Government Debt with Shares in GDP. The Economists' Voice, 7(3).
- Leland, H. (1998). Agency Costs, Risk Management, and Capital Structure. Journal of Finance, 53:1213–1243.
- Mendoza, E. G. and Yue, V. Z. (2012). A General Equilibrium Model of Sovereign Default and Business Cycles. Quarterly Journal of Economics, 127(2):889–946.
- Missale, A. (1997). Managing the Public Debt: The Optimal Taxation Approach. Journal of Economic Surveys, 11(3):235-265.
- Missale, A. (2012). Sovereign Debt Management and Fiscal Vulnerabilities. In for International Settlements, B., editor, Threat of Fiscal Dominance?, volume 65 of BIS Papers chapters, pages 157–176. Bank for International Settlements.
- Missale, A. and Blanchard, O. J. (1994). The Debt Burden and Debt Maturity. The American Economic Review, 84(1):309-319.
- Missale, A. and Giavazzi, F. (2005). Public Debt Management in Brazil. In Inflation Targeting, Debt, and the Brazilian Experience, 1999 to 2003. The MIT Press.
- Pallara, K. and Renne, J.-P. (2024). Fiscal Limits and the Pricing of Eurobonds. Management Science, 70(2):1216–1237.
- Piazzesi, M. and Schneider, M. (2007). Equilibrium Yield Curves. In NBER Macroeconomics Annual 2006, Volume 21, NBER Chapters, pages 389–472. National Bureau of Economic Research.
- Pick, A. and Anthony, M. (2008). A Simulation Model for the Analysis of the UK's Sovereign Debt Strategy. UK DMO Working Paper, UK DMO.
- Pienkowski, A. (2017). Debt Limits and the Structure of Public Debt. IMF Working Papers 17/117, International Monetary Fund.
- Reinhart, C. M. and Rogoff, K. S. (2011). The Forgotten History of Domestic Debt. Economic Journal, 121(552):319-350.
- Rudebusch, G. D. and Swanson, E. T. (2012). The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks. American Economic Journal: Macroeconomics, 4(1):105–143.


References IV

- Schmid, L., Valaitis, V., and Villa, A. (2023). Government Debt Management and Inflation with Real and Nominal Bonds. CEPR Discussion Papers 18197, C.E.P.R. Discussion Papers.
- Shiller, R. J. (1998). Macro Markets: Creating Institutions for Managing Society's Largest Economic Risks. Number 9780198294184 in OUP Catalogue. Oxford University Press.
- van den Noord, P. (2000). The Size and Role of Automatic Fiscal Stabilizers in the 1990s and Beyond. OECD Economics Department Working Papers 230, OECD.
- Woodford, M. (2001). Fiscal Requirements for Price Stability. Journal of Money, Credit and Banking, 33(3):669–728.

Demand-driven economy, $v_v = 0$

(a) Demand-driven economy

(b) Supply-driven economy

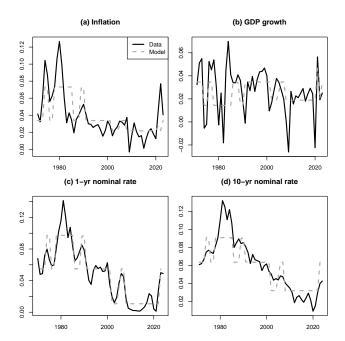

Model parameterization – U.S. economy Dack

Table: Model parameterization

Regime	μ_{π}	μ_y			Ω		
1	0.030	0.060	0.867	0.133	0.000	0.000	0.000
2	-0.016	-0.100	0.715	0.118	0.167	0.000	0.000
3	0.073	0.014	0.029	0.000	0.962	0.008	0.000
4	0.034	0.035	0.000	0.063	0.275	0.634	0.028
5	0.022	0.019	0.001	0.196	0.000	0.051	0.752

Notes: This table shows the model parameterization of the baseline model. We also have: $\alpha = 0.1$, $\beta = 0.20$, $\gamma = 10$, $\delta = 0.99$, $d^* = 1.10$, $s^* = -0.176$, $\nu_y = -0.050$, $\nu_{\pi} = -0.021$, $\mu_{\eta} = 0.5 \times \mu_y$, RR = 0.50.

Jean-Paul Renne

An Analytical Framework for Public Debt Management 3rd PDM conference, World Bank.