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Abstract

This paper introduces a macro-finance framework for evaluating the performance of pub-
lic debt management strategies. Within the model, risk-averse investors may lose confi-
dence in debt sustainability when indebtedness reaches high levels. Since the govern-
ment’s choice of securities affects debt dynamics, public debt management influences
default probability in the model. Featuring stochastic macroeconomic shocks, the model
produces realistic macro-finance dynamics. It is calibrated and used to explore the cost
and risk implications of issuance strategies that vary across three dimensions: maturity,
inflation indexation, and GDP indexation.
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1. Introduction

This paper proposes an analytical framework designed to explore how the structure of

government debt affects debt sustainability. Within the model, the debt structure is char-

acterized by three main features: average maturity, indexation to inflation, and indexation

to real Gross Domestic Product (GDP). The pricing of government securities is influenced

by investors’ risk preferences, who typically require an average excess return on securi-

ties that perform worse in economic downturns (recessions). Investors also consider high

debt levels to be unsustainable, and these concerns are reflected in government bond

prices. We employ approximate, grid-based solution methods to address the fixed-point

problem arising from the feedback loop between debt accumulation and credit spreads.

This solution remains feasible in the context of exogenous stochastic switches in macroe-

conomic regimes, making the model rich enough to be brought to the data. We demon-
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strate how to utilize the model to assess the effectiveness of various issuance strategies,

focusing on their ability to prevent debt-to-GDP ratios from reaching levels that could

undermine the government’s credibility in fully repaying its debt.

This paper aims to achieve a unique balance between integrated economic modeling

and the model’s applicability to real-world data. Practitioner-oriented simulation frame-

works typically focus on fitting the model to historical data but often comprise distinct

components, such as a macroeconomic block and a yield curve block, that lack interac-

tion, such as feedback from debt levels to funding costs. On the other hand, models in

academic studies are often too rigid for practical application with real-world data.1

Assessing the effectiveness of debt issuance strategies depends on the joint dynam-

ics of security prices and macroeconomic variables, notably inflation and real output.

We show this by comparing cost and risk performance in two stylized economies that

are almost identical, with the exception of the correlation between inflation and GDP

growth: one economy is demand-driven, while the other is supply-driven. In a demand-

driven economy, issuing nominal bonds is highly favorable due to generally lower nom-

inal yields resulting from low term premiums. In contrast, this strategy is less advanta-

geous in a supply-driven economy. This result, in line with Hur, Kondo, and Perri (2018),

underscores the importance of basing issuance recommendations on macro-finance mod-

els that are sufficiently comprehensive and, in particular, that are able to generate realistic

risk premiums. Another example concerns the performance of GDP-linked debt. While

simplistic models that disregard risk premiums and focus solely on short horizons indi-

cate that GDP-linked bonds should perform well due to their inherent hedging proper-

ties, our framework, consistent with Mouabbi et al. (2024), offers a different perspective.

More specifically, our approach takes into account the substantial risk premiums that in-

vestors would demand to hold GDP-linked bonds. Hence, a massive issuance of such

bonds would lead to higher financing costs for the government, translating into higher

debt levels, and therefore to wider credit spreads compared to conventional bonds.

1The practical importance of incorporating more complex macroeconomic dynamics and risk prefer-
ences than the ones typically used in standard sovereign default models has recently been emphasized by
Hur, Kondo, and Perri (2018).
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The rest of this paper is organized as follows. Section 3 provides a review of the

literature related to this paper. Section 2 presents the modelling framework and Section 4

shows how it can be used to assess the performance of debt issuance strategies. Section 5

concludes. Proofs, estimation details, and additional results are gathered in the appendix.

2. Literature review

This section briefly reviews the literature on public debt management. It is completed

by Table 1, which provides details on selected papers.

Pioneering contributions by Barro (1979, 1995) stated that, from the sovereign’s per-

spective, the optimal debt management strategy would involve issuing bonds linked

to government expenditure to smooth taxes over time. This would however raise sub-

stantial moral hazard, and further research has looked for the possibility to achieve tax

smoothing using conventional bonds. Angeletos (2002) demonstrates in particular that

the government can almost achieve complete market outcomes through fluctuations in

the yield curve, recommending the issuance of long-term debt while investing in short-

term assets. However, Faraglia, Marcet, and Scott (2010) argue that significant issues arise

when relying solely on non-contingent bonds to achieve such fiscal insurance; they high-

light that the recommendations from this approach, such as holding multiples of GDP

in short bonds (Buera and Nicolini, 2004), are unrealistic, non-robust, and not practiced

by real-world governments. Tax smoothing or fiscal insurance are not the only concepts

that have been used in the literature to guide optimal public debt management. Green-

wood, Hanson, and Stein (2015), in particular, study optimal government debt maturity

in a model where investors derive monetary services from holding riskless short-term

securities.

While previous articles focus on the optimal maturity structure of public debt, another

strand of the literature emphasizes the role of indexing debt to inflation and real activity.

Bohn (1990) and Barro (2003) uses a tax-smoothing objective to assess the optimal com-

position of public debt with respect to inflation indexation. More recently, Schmid et al.

(2023) develop a model where a strategic government issues part of its debt in the form

of inflation-indexed bonds to prevent future governments from monetizing debt ex-post.
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Several studies, including, Froot, Scharfstein, and Stein (1989), Shiller (1998), Kamstra and

Shiller (2009, 2010), and Pienkowski (2017) argue that tying debt repayments to the is-

suer’s GDP performance could mitigate the adverse effects of negative economic growth

on debt repayment capabilities. Obstfeld and Peri (1998), along with Borensztein and

Mauro (2004), propose the issuance of GDP-linked warrants, a derivative security whose

payouts are tied to the economic performance of a sovereign entity. Mouabbi, Renne, and

Sahuc (2024) emphasize the potential costs associated with these instruments, noting that

bondholders would demand excess returns to offset the increased exposure to recession

risks.

Many of the previous studies do not incorporate credit risk into their analyses (see

the second column of Table 1). Specifically, research focusing on tax-smoothing objectives

typically assumes debt sustainability, thus excluding the need to consider debt levels.

However, as noted by Missale (1997, 2012), the ability of governments to obtain insurance

is constrained by the necessity to maintain credibility at high debt levels. The simulation

approaches implemented by practitioners to evaluate cost and risk measures of debt is-

suance strategies also usually abstract from potential sovereign credit risk (e.g., Bergstrom

et al., 2002; Pick and Anthony, 2008; Bolder and Deeley, 2011; Balibek and Memis, 2012;

Bernaschi et al., 2019). In the present paper, we argue that there are performance metrics

capable of integrating both tax-smoothing and debt sustainability objectives. For exam-

ple, a strategy that limits the occurrence of high debt—measured by the upper percentiles

of the debt-to-GDP distribution—aligns with both hedging against fiscal shocks and con-

trolling sovereign credit risk.

3. Model

3.1. Overview

We consider an economy populated by a representative risk-averse agent that prices

instruments whose payoffs are exposed to the default event of the government. The gov-

ernment default status is denoted by a binary variable Dt, with Dt = 1 if the government

has defaulted at or before t, and Dt = 0 otherwise. On date t, the investor observes the

default status Dt as well as new information in the form of a vector zt; we will often refer
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Table 1: Overview of the literature on optimal public debt management

Paper Default Model and optimality criteria Types of
Instruments

Greenwood,
Hanson, and Stein
(2015)

− 3-period model. Investors derive monetary ser-
vices from holding riskless short-term securities.
No inflation. Criterion: Social welfare.

TS-R

Missale and
Giavazzi (2005)

− Simple (i.i.d.) dynamics of inflation, output
growth and exchange rate. Criterion: quantiles
of debt-to-GDP ratio.

ST-RNX

Debortoli, Nunes,
and Yared (2017)

− Stochastic equilibrium model with fiscal policy
distortions. Government cannot commit to fis-
cal policy. Criterion: social welfare.

ST-N, GD-N

Missale and
Blanchard (1994)

− Study the gov temptation to inflate debt away.
Loss function including tax rate

ST-N, LT-N

Drudi and Giordano
(2000)

✓ 3-period model. Criterion: ad-hoc loss function
involving tax rate, inflation, and default costs.

3-period model,
ST-RNX,
LT-RNX

Angeletos (2002) − Stochastic production economy with distor-
tionary taxes. Incomplete markets. Criterion:
Social welfare.

ST-R and P-R

Buera and Nicolini
(2004)

− Stochastic production economy with distor-
tionary taxes. Incomplete markets. Criterion:
Social welfare.

TS-R

Faraglia, Marcet, and
Scott (2010)

− Stochastic production economy with distor-
tionary taxes. Incomplete markets. Criterion:
Social welfare.

TS-N

Bhandari, Evans,
Golosov, and Sargent
(2017)

− Stochastic production economy with distor-
tionary taxes. Criterion: Social welfare

ST-R, P-R

Bigio, Nuño, and
Passadore (2023)

− Deterministic model. The government faces liq-
uidity costs during bond auctions; the model
also features preferred-habitat investors. Crite-
rion: social welfare.

TS-N

de Lannoy,
Bhandari, Evans,
Golosov, and Sargent
(2022)

− General stochastic macro-finance models. Crite-
rion: Social welfare

TS-R

Bocola and Dovis
(2019)

✓ Small-scale macro-finance model à la Cole and
Kehoe (2000). Decay coupon rate is time-
varying (endogenous). Criterion: Social welfare.

GD-N

Notes: This table reviews some papers belonging to the literature on optimal debt management. Acronyms
in the last column are as follows: ’TV’ is for time-varying; ’TS’ is for term structure; ’-R’ is for real (referring
to inflation-linked securities); ’-N’ is for nominal (referring to nominal securities); ’ST’ is for short-term;
’GD’ is for geometrically decaying (referring to perpetuities with geometrically decaying coupons); ’P-’ is
for perpetuities (or console); ’RNX’ refer to bonds that can be either nominal, real (or inflation-indexed), or
indexed to a foreign exchange rate).
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to the latter as the state vector. This vector includes the Gross Domestic Product (GDP,

Yt), assumed to be totally consumed on date t, a price index (Πt), the government debt-

to-GDP ratio (dt), the debt service (rt), and the government budget surplus (st). The last

three variables are expressed as fractions of GDP. The (log) growth rates of GDP and of

the price index are respectively denoted by ∆yt and πt. (Hence, πt is the inflation rate.)

The latter two variables are driven by an exogenous vector mt; as in Renne and Pallara

(2024), inflation and output growth may also be caused by the government default itself,

as explained in Subsection 3.4.2.

The model is built in such a way that (zt,Dt) is a Markovian process; this implies that

an expectation conditional on the information accumulated until date t—usually repre-

sented by the operator Et(.)—coincides here with E(.|Dt, zt). We will indifferently use

these two notations.

3.2. Debt dynamics

3.2.1. Government debt issuances

Following, among others, Leland (1998), Woodford (2001), Hatchondo and Martinez

(2009), and Debortoli, Nunes, and Yared (2017), we adopt the simplifying assumption

that the government issues perpetuity contracts with coupon payments that decay geo-

metrically at rate χ.2 Contrary to the previous studies, however, we allow each coupon

payment to be indexed to inflation and/or GDP. For that, we construct an index that we

call “composite index” as it combines the price index (Πt) and real GDP (Yt). Formally,

the composite indicator is given by Πκπ
t Yκy

t , where κπ and κy are indexation coefficients.

In the absence of default, a perpetuity issued on date t yields a nominal payment of

χh−1Πκπ
t+hYκy

t+h on date t + h. Note, for instance, that when (κπ, κy) = (1, 0), the perpe-

tuity provides the equivalent of χh−1 units of goods on date t + h—the perpetuity is then

perfectly indexed to inflation.3

2Intuitively, this means that in each period the government issues a set of zero-coupon bonds in con-
strained relative proportions. The geometrically decaying structure broadly aligns with real-world expe-
rience. This assumption is essential for keeping the state-space model manageable; without it, the state
would need to encompass not only the total debt dt but also the entire debt repayment schedule.

3The present security is a generalization of the indexed perpetuity proposed by Cochrane (2016). Specif-
ically, Cochrane (2016)’s indexed perpetuity corresponds to the present one when (χ, κπ , κy) = (1, 0, 1).
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Figure 1: Schematic representation of the model

Macro block

πt and ∆yt [eq. (15)]

Investor preferences

SDF Mt,t+1 [eq. (8)]

Bond prices’ dynamics

Pt and qt [eq. (11)]

Debt and surplus

dt and rt [eqs. (3)-(5)]

st [eq. (16)]

Issuance strategy

(χ, κπ, κy) [eq. (1)]

Default risk

[eq. (13)]

Note — This figure provides a schematic view of the model. The securities (perpetuities) issued by
the government are described in Subsection 3.2.1; this subsection also defines the price (Pt) and yield-
to-maturity (qt) of these perpetuities (eq. 2). The debt accumulation process is discussed in Subsec-
tion 3.2.2. Investor preferences are described in Subsection 3.3.1. The specification of the conditional
default probability is given in Subsection 3.4.1. The dynamics of inflation (πt) and real GDP growth
(∆yt is presented in Subsection 3.4.2. The lower part of the diagram highlights the fixed-point problem
inherent in the model: debt dynamics depend on bond prices, which depend on the probability of de-
fault, which in turn depends on debt dynamics. The thick grey arrow on the left of the plot represents
the potential effect of a default on the macroeconomy (captured by parameters νy and νπ in eq. 15).
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The government may default on these perpetuities. Denoting the recovery rate by RR,

an investor having purchased the perpetuity on date t receives the following amount on

date t + h, expressed in currency units:

χh−1[1 × (1 −Dt+h) + RR ×Dt+h]× Πκπ
t+hYκy

t+h. (1)

The price of the perpetuity, expressed in units of the composite index, is denoted by

Pt. That is, expressed in currency units, the price of the perpetuity Πκπ
t Yκy

t Pt. The price

Pt is directly expressed in dollar terms when (κπ, κy) = (0, 0); it is expressed in terms of

units of goods (i.e., in real terms) when (κπ, κy) = (1, 0), and in terms of units of GDP

when (κπ, κy) = (1, 1).

The perpetuity’s yield-to-maturity qt (or internal rate of return) is defined through:

Pt =
∞

∑
h=1

χh−1

(1 + qt)h =
1

1 + qt − χ
. (2)

Note that this return is expressed in terms of composite index units; it coincides in par-

ticular with a nominal return when (κπ, κy) = (0, 0) and to a real return when (κπ, κy) =

(1, 0).4

3.2.2. Resulting debt accumulation process

Consistently with international debt accounting standards—on which our data are

based—the concept of debt valuation we opt for is that of “nominal valuation of debt

securities,” where the debt outstanding covers the sum of funds originally advanced,

plus any subsequent advances, less any repayments, plus any accrued interest.5

When the government issues the perpetual bonds presented in Subsection 3.2.1, the

debt dynamics is governed by the following equations:

4When (κπ , κy) = (1, 1), indicating a GDP-linked bond, this return lacks a standard interpretation, as it
is neither comparable to a nominal rate nor a real rate. Instead, it must be added to a nominal GDP growth
rate in order to be comparable to a nominal yield.

5See International Monetary Fund, Bank for International Settlements and European Central Bank
(2015). As noted in Renne and Pallara (2024), although such a precision is innocuous in the context of
models considering only short-term issuances, it is not in the present context, where the government issues
long-dated debt instruments. This debt concept— which is the one used in the Debt Sustainability Analy-
sis (DSA) by investors, market analysts, and international institutions—does not coincide with the market
value of debt, see Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2023).
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Proposition 1. In the absence of default until date t + 1, we have:

dt+1 = exp(−πt+1 − ∆yt+1)dt − st+1 + rt+1 (3)

rt+1 = (exp(κππt+1 + κy∆yt+1)− 1) exp(−πt+1 − ∆yt+1)dt︸ ︷︷ ︸
debt indexation (ζt+1−ζt+1)dt

+rt+1 (4)

rt+1 = ζt+1q(zt) (dt − χζtdt−1)︸ ︷︷ ︸
date-t issuances

+ζt+1χrt, (5)

where rt (respectively rt) is the debt service including (resp. excluding) indexation costs expressed

as a fraction of GDP, and where ζt = exp[(κπ − 1)πt + (κy − 1)∆yt]

ζt = exp(−πt − ∆yt).

The perpetuity’s yield-to-maturity q is a function of the state zt that includes dt, dt−1, and rt.

Proof. See Appendix I.1.

Remarkably, in spite of the fact that, in the current framework, (i) the government may

issue long-term securities and (ii) these securities can provide contingent payoffs, the debt

accumulation process (3) is similar to simpler models where the government issues only

one-period bonds.6 Indexation and duration however show up in (4) and (5), respectively.

Equation (5), in particular, shows that interest payments—excluding indexation—take the

form of an exponential smoothing of previous interest rates.

To perfectly stabilize the debt-to-GDP ratio, one would need to have

rt = (1 − exp(−πt − ∆yt))dt−1 + st ≈ (πt + yt)dt−1 + st. (6)

To fix ideas, consider the case where χ = 0—the government issues short-term bonds. In

that case, if inflation and GDP growth are small, we have, using (4) and (5):

rt ≈ (qt−1 + κππt + κy∆yt)dt−1. (7)

6In such toy models of debt accumulation, this equation is supplemented by rt ≈ qt−1dt−1 if the gov-
ernment issues nominal bonds (qt then is the short-term nominal yield), and rt ≈ (qt−1 + πt)dt−1 if the
government issues inflation-linked bonds (qt then is a real rate).
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Combining (6) and (7), it comes that the stabilization of dt between dates t − 1 and t then

requires:

st = (qt−1 + (κπ − 1)πt + (κy − 1)∆yt)dt−1.

At date t − 1, qt−1 and dt−1 are known. As a result, the government achieves debt stabi-

lization, i.e., dt = dt−1, if (κπ, κy) = (1, 1) and if it is able to commit to the future surplus

st = qt−1dt−1. This reasoning is in favor of the issuance of short-term debt indexed to

nominal GDP, i.e., (χ, κπ, κy) = (0, 1, 1).

The previous reasoning is however subject to several limitations. First, it is difficult

for the government to commit to the future surplus st = qt−1dt−1 in date t − 1: de-

noting nominal tax receipts by Tt and government expenditures by Gt, we have st =

(Tt − Gt)/(ΠtYt); none of the four terms appearing in the previous expression are easy to

forecast from one year to the other. Second, this reasoning focuses on the predictability

of the debt-to-GDP ratio from date t − 1 to date t, i.e. on a single-period horizon. But this

predictability does not carry over to longer horizons because, for any type of perpetuity

the government issues, qt randomly varies over time: As of date t − 1, we know qt−1—

that allows to predict dt—but we do not know qt—that is needed to forecast dt+1. In other

words, if the prices of bonds indexed to GDP are particularly volatile, then medium to

long-term forecasts of debt-to-GDP may be worse than that that would result from the is-

suance of more conventional bonds—even though short-term forecasts are more accurate.

Third, this reasoning focuses on the predictability of future debt-to-GDP ratio, abstracting

from its level. If investors ask premiums to hold GDP-linked bonds, then the distribution

of future debt-to-GDP may be shifted to the right with respect to more standard issuance

strategies, reducing the advantage of issuing such securities (Mouabbi et al., 2024).7

3.3. Security pricing

This subsection provides general security pricing formulas. Subsection 3.3.1 presents

a general SDF specification. Subsection 3.3.2 contains propositions that characterizes the

7Even when the distribution of debt-to-GDP exhibits a small variance (e.g., attributable to fiscal insur-
ance mechanisms), a high mean can still result in significant upper quantiles for this distribution. This
implies that elevated average funding costs may diminish the advantages of smoothing as far as debt sus-
tainability is concerned (having in mind a fiscal limit concept).
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pricing of the government perpetuity and of (indexed) zero-coupon bonds in our econ-

omy.

3.3.1. The stochastic discount factor (SDF)

We consider a flexible specification of the stochastic discount factor (SDF):

Mr
t,t+1 = exp( f r(zt, zt+1) + νr(zt+1)∆Dt+1). (8)

This specification is general and could accommodate various types of time-separable

or recursive preferences. In particular, the SDF takes this form when we combine the

macroeconomic dynamics described in Subsection 3.4.2 together with Epstein and Zin

(1989)’s preferences with unit elasticity (see Appendix II);8 we will employ such prefer-

ences in our quantitative exercises (Section 4).

A particularity of (8) lies in the presence of the sovereign default in the SDF. Intuitively,

a SDF reflects economic fears. Consequently, since the SDF of (8) jumps in the event of

default when νr is positive, this specification captures investors’ specific aversion to a

government default—for example, because they believe that a government default would

generate a crisis that would jeopardize their current and future consumption.9

Eq. (8) defines the real SDF. To develop our analysis, we need two other types of SDFs:

the nominal one and the one that allows to price payoffs expressed in units of the compos-

ite index. It is well-known that the nominal SDF (M$
t,t+1, say) and the real SDF are linked

through M$
t,t+1 = Mr

t,t+1 exp(−πt+1). More generally, define Mt,t+1 as the SDF that

allows to price assets whose payoffs are expressed in units of the composite index; we

8Epstein-Zin preferences break the link between relative risk aversion (γ) and the intertemporal elastic-
ity of substitution (set to one here) in CRRA preferences. Bansal and Yaron (2004) and Bansal and Shalias-
tovich (2013), among others, have demonstrated the appropriateness of such preferences to account for the
dynamics of asset prices.

9The existence of a direct effect of the default event on the SDF gives rise to specific credit risk premiums,
called credit-event risk premiums, in the prices of bonds issued by the considered systemic entity (e.g.,
Driessen, 2005; Gouriéroux et al., 2014; Bai et al., 2015). Eq. (8) is consistent with the literature studying the
asset-pricing influence of disasters (e.g. Barro, 2006, Eq. 7, Arellano, 2008, Eq. 3, Barro and Jin, 2011, Eq. 1,
Gabaix, 2012, Eq. 1, Arellano and Ramanarayanan, 2012, last equation of Section III, Wachter, 2013, Eq. 1).
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have:10

Mt,t+1 = M$
t,t+1

Πκπ
t+1Yκy

t+1

Πκπ
t Yκy

t

= Mr
t,t+1 exp((κπ − 1)πt+1 + κy∆yt+1).

If inflation and output growth admit the following general specifications:

πt = fπ(zt) + νπ∆Dt, and ∆yt = fy(zt) + νy∆Dt, (9)

we get:

Mt,t+1 = exp( f (zt, zt+1) + ν(zt+1)∆Dt+1), (10)

where  f (zt, zt+1) = f r(zt, zt+1) + (κπ − 1) fπ(zt+1) + κy fy(zt+1)

ν(zt+1) = νr(zt, zt+1) + (κπ − 1)νπ + κyνy.

3.3.2. Solving for the price of perpetuity and zero-coupon bonds

At this stage, the model is not complete since we have not made explicit the dynamics

of inflation, GDP growth and the budget surplus—which are involved in the System (3)-

(5)—nor have we expressed the default process (or probability of default). Nevertheless,

we can already formulate the restriction that has to be satisfied by the price of the perpe-

tuity issued by the government, whatever the dynamics of (mt, st) or the specification of

the government default probability. This is done in Proposition 2.

Proposition 2. Function q satisfies the following fixed-point problem:

q(zt) = χ − 1 + (11)
1

Et

(
exp ( f (zt, zt+1))

[
Dt+1

(
RReνr(zt+1)(1 + χP(zt+1))− 1+q(zt+1)

1+q(zt+1)−χ

)
+ 1+q(zt+1)

1+q(zt+1)−χ

]) ,

10By definition of Mt,t+1, for any asset whose date-t price is xt (expressed in units of the composite
index), we must have: xt = Et(Mt,t+1xt+1). But we must also have xt Indext = Et(M$

t,t+1xt+1 Indext+1).

We therefore have: Mt,t+1 = M$
t,t+1 Indext+1

/
Indext = M$

t,t+1 exp(κππt+1 + κy∆yt+1). Notice that we
have Mt,t+1 = Mr

t,t+1 when (κπ , κy) = (1, 0) since, in this case, the composite-indexed bond is an inflation-
linked (or real) bond.
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where P is the post-default price of the perpetuity, that is:

P(zt) = E

(
∞

∑
h=1

χh−1Mt,t+h

∣∣∣∣∣Dt = 1, zt

)
.

Proof. See Appendix I.2.

The solution function q(.) depends on (i) the dynamics of the exogenous macroeco-

nomic factors mt, (ii) the fiscal rule (i.e., the specification of the budget surplus st), and

(iii) the conditional probability of default (governing the dynamics of Dt). These ingredi-

ents are made precise in Subsection 3.4.

As is the case for the perpetuity, we can also already express general pricing formulas

for zero-coupon bonds. Let us first define such bonds and their payoffs. For that, assume

that the government has not defaulted before date t (i.e., Dt = 0). Denote by Bh(zt) the

date-t price of a defaultable zero-coupon bond of maturity h. At maturity, that is on date

t + h, this bond provides a payoff of 1 if Dt+h = 0, and a payoff of RR < 1 if Dt+h = 1.11

Proposition 3. The prices of zero-coupon bonds can be computed recursively using:

Bh(zt) = E
[

exp( f (zt, zt+1))Bh−1(zt+1) + (12)

Dt+1 exp( f (zt, zt+1))
{

RReν(zt+1)Bh−1(zt+1)−Bh−1(zt+1)
}∣∣∣Dt = 0, zt

]
,

starting from B0(x) = 1 for any state x. In (12), Bh(zt) denotes the price of a post-default

zero-coupon bond, i.e.:

Bh(zt) = E(Mt,t+h|Dt = 1, zt).

Proof. See Appendix I.4.

It is worth mentioning that pricing zero-coupon bond is not necessary to solve for the

model since the government issues perpetuities, and not zero-coupon bonds.12 Neverthe-

11This definition coincides with the recovery of market value (RMV) convention of Duffie and Singleton
(1999), who consider that, upon default (on date t + k, k ≤ h, say), the recovery payment of a defaultable
zero-coupon bond of residual maturity h is equal to a fraction RR of a risk-free zero-coupon bond of ma-
turity equal to the residual maturity of the defaulted bond, i.e., Et+k(Mt+k,h−k|∆Dt+k = 1). Indeed, in the
RMV context, the default payoff is RREt+k(Mt+k,h−k|∆Dt+k = 1), which is also the net present value, as of
the default date (t + k), of the payoff RR at the original maturity date (t + h).

12The perpetuity can however be seen as a collection of zero-coupon bonds: if Dt = 0, we have P(zt) =
∑∞

h=1 χh−1Bh(zt).
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less, it can be useful to compute such bond prices and the associated yields-to-maturity;

this is for instance the case for model validation, since zero-coupon yields are more stan-

dard objects than the perpetuity’s yield-to-maturity.

3.4. Other modelling ingredients

In this subsection, we complete the model by introducing (i) dynamics for the exoge-

nous macroeconomic factor mt and (ii) a specification for the conditional probability of

default. We however stress that the results presented above are general and could accom-

modate alternative specifications for (i) and (ii).

3.4.1. Sovereign default probability

The specification of the conditional probability of default of the government is bor-

rowed from Pallara and Renne (2024). It takes the form of a decreasing function of the

fiscal space, d∗ − dt, where d∗ can be understood as a fiscal limit. If the sovereign default

occurs as soon as d∗ > dt, the fiscal limit is “strict,” in the sense that default is automat-

ically triggered when the limit is breached. However, in order to capture non-modeled

factors that may precipitate or delay default—e.g. political factors (Hatchondo and Mar-

tinez, 2010)—we introduce a Gaussian white noise νt, of variance σ2
ν , and assume that the

probability of default depends on d∗ − dt + νt+1, which is a noisy measure of the fiscal

space. Specifically, the conditional probability of observing a sovereign default on date

t + 1 is of the form:

P(Dt+1 = 1|Dt = 0, zt, νt+1) = F (d∗ − dt + νt+1), (13)

where F is a function valued in [0, 1]. Function F is such that F (u) = 0 for u ≥ 0,

implying that the default probability is equal to zero as long as the (noisy) fiscal space

debt is nonnegative. Moreover, function F is increasing: the larger the distance between

debt and the fiscal limit, the higher the probability of default. In the following, we employ

the following specification for F :

F (dt − d∗ − νt+1) = 1 − exp(−max[0, α(dt − d∗ − νt+1)]︸ ︷︷ ︸
=λt+1

), (14)
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with α > 0. λt+1 ≡ α max(0, dt − d∗ − νt+1) is the default intensity. When it is small, it is

close to the conditional probability of default P(Dt+1 = 1|Dt = 0, zt, νt+1).

The parameter α is another modeling ingredient—on top of νt—that makes it possible

to control for the strictness of the fiscal limit. This is illustrated by Figure 2, that displays

the probabilities of observing a default over a year, conditional on a given level of the

fiscal space dt − d∗, and for different values of α. If α is large, the fiscal limit is strict, in

the sense that default is likely to happen as soon as dt > d∗. By contrast, if α is small, the

fiscal limit is softer, in the sense that, for the same value dt − d∗ > 0, a sovereign default

on date t is possible, but less likely.13

Figure 2 illustrates the influence of α and the fiscal space on the probability of default.

3.4.2. Dynamics of macroeconomic variables

We assume that the dynamics of inflation and GDP growth are governed by

πt = µ′
πmt + νπ∆Dt, and ∆yt = µ′

ymt + νy∆Dt, (15)

where mt is a selection vector of dimension nm × 1. It can be noted that (15) is consis-

tent with (9) since mt is part of the state vector zt. Vector mt follows an exogenous and

homogeneous regime-switching process.14 Specifically, its dynamics is defined through a

matrix of transition probabilities Ω. Specifically, this matrix is such that

P(mt+1 = ej|mt = ei) = e′iΩej,

13As argued in Pallara and Renne (2024), the notion of soft fiscal limit is consistent with the widespread
idea that it is difficult to assess sovereign debt sustainability (e.g., Warmedinger et al., 2017; Debrun et al.,
2019), which gives rise to “grey areas” where default becomes likely but can also be avoided. The World
Bank and the IMF themselves reckon that, alongside quantitative approaches, the use of judgment is needed
to assess sovereign debt sustainability (IMF and World Bank, 2021). The present modelling can also be seen
as a way to capture “crisis zones” arising multiple-equilibria frameworks à la Cole and Kehoe (2000).

14The fact that inflation is driven by exogenous shocks—aside from the endogenous default effect—
contrasts with the literature on debt and inflation that emphasizes strategic inflation, whereby govern-
ments use inflation to manage high debt burdens during economic downturns (e.g., Missale and Blanchard,
1994). However, as Hur, Kondo, and Perri (2018) note, such mechanisms are more applicable to emerging
economies; in advanced economies, greater monetary policy independence and monetary union constraints
make them less relevant.
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Figure 2: Annual probability of default with respect to fiscal space (d∗ − dt)
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Note: This figure shows the posited relationship between sovereign default probability and fiscal space
(d∗ − dt). More precisely, it shows P(Dt+4 = 1|Dt = 0, d∗ − dt+i = u, i = 0, . . . , 3). According to
(13) and (14), conditionally on the fiscal space d∗ − d and on the noise ν (with ν ∼ i.i.d.N (0, σ2

ν ), and
σν = 0.2 here), the (one-quarter) probability of default is 1 − exp(−λ), where λ = max(0, d − d∗ − ν).
The probability of default is therefore strictly positive only when the noisy fiscal space (d∗ + ν − d) is
strictly negative, and null otherwise. Standard results on truncated normal distributions allow to com-
pute the default probability conditional on the fiscal space only (d∗ − d)—i.e. integrating out over all
possible values of the noise ν. Formally: P(Dt+1 = 1|Dt = 0, d∗ − dt = u) = 1 − f (u), with f (u) =
Φ
(
u
/

σν

)
+ exp

(
αu + α2σ2

ν

/
2
) (

1 − Φ
(
u
/

σν + σνα
))

. The one-year default probabilities—displayed on the
figure—are given by 1 − f (u)4.

where ei denotes the ith column of the identity matrix of dimension nm × nm. The defini-

tion of Ω implies in particular that E(mt+1|mt) = Ω′mt.

Parameters νπ and νy capture specific effects of the sovereign default on inflation

and GDP growth, respectively. In other words, our model accommodates the potential

macroeconomic impact of a sovereign default, aligning with what empirical evidence

suggests (see Subsection 4.3.1).
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3.4.3. Budget surplus

The primary budget surplus is given by:

st = s∗ + β × dt−1︸ ︷︷ ︸
stabilization component

+ ηt,︸︷︷︸
risk component

(16)

where the term βdt−1 (with β > 0) captures the government’s desire to stabilize the debt

(as in, e.g., Bohn, 1998; Ghosh et al., 2013), and where the risk component ηt includes an

exogenous shock (εt), but can also depend on the macroeconomic regimes mt:

ηt = εt + µ′
η(mt − Et−1(mt)) = εt + µ′

η(mt − Ω′mt−1).

The term µ′
η(mt −Et−1(mt)) allows to introduce conditional correlation between primary

budget surpluses and macroeconomic innovations. Typically, setting µη equal to a multi-

ple of µy drives a correlation between surpluses and output growth, which is consistent

with empirical evidence (e.g., van den Noord, 2000).

3.5. Solving the model

At this point, all components of the model have been presented. To generate outputs

for a specific set of parameters and a given issuance strategy, we need to solve the model.

This involves (A) determining function q(.), which characterizes the price of the perpe-

tuity issued by the government (see Subsection 3.2.1) and (B) solving for the stochastic

discount factor (SDF) for specific agents’ preferences (see Subsection 3.3.1). In our appli-

cation, we consider Epstein-Zin preferences with a unit elasticity of intertemporal substi-

tution.15,16

Note that these two tasks, namely (A) and (B), are intertwined since the computation

of the SDF (task B) depends on how the default probability is affected by the state zt,

15Using a unit EIS facilitates the resolution, i.e., the computation of the stochastic discount factor (e.g.,
Piazzesi and Schneider, 2007; Seo and Wachter, 2018, among others).

16While the SDF could be directly parameterized (by defining function f r and νr of eq. 8 in an ad-
hoc parametric way), considering standard preferences is useful to discipline the model calibration and
keep it parsimonious. Typically, by considering Epstein-Zin preferences, we simply need to specify two
additional parameters: a coefficient of risk aversion and the elasticity of intertemporal substitution (EIS).
See Appendix II for details regarding the derivation of the SDF in the context of Epstein-Zin preferences
with unit EIS.
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whose dynamics depend on the pricing of perpetuities (task A), that, in turn, depends

on the SDF. Appendix III describes the numerical strategy we employ to address these

nested fixed-point problems.

4. Application

Within the model, the government can adjust its issuance strategy using three key

levers: average debt maturity (via the coupon decay rate), inflation indexation (through

κπ), and indexation to real GDP growth (through κy). That is, a debt strategy is defined by

(χ, κπ, κy). This strategy impacts bond prices, debt dynamics, and ultimately, the likeli-

hood of default. In Subsection 4.2, we examine the performances associated with different

issuance strategies in the context of stylized economies. In Subsection 4.3, we conduct the

same type of exercise in an economy calibrated to U.S. data. Before turning to these exer-

cises, we present the metrics that we will use to compare the performance of the issuance

strategy.

4.1. Measuring the debt strategy performances

A variety of metrics have been devised in both academic circles and by practitioners to

assess the effectiveness of issuance strategies (e.g., Missale, 1999, 2012). While academics

have mainly focused on debt sustainability, moral hazard, and the ability of a debt struc-

ture to shield the government from unforeseen fiscal shocks (see Section 1), practitioners

have concentrated on metrics concerning the cost and risk associated with debt charges

(e.g., Bergstrom et al., 2002; Pick and Anthony, 2008; Bolder and Deeley, 2011; Balibek

and Memis, 2012; Bernaschi et al., 2019).

This framework allows for the calculation of various cost and risk metrics related to

interest expenditures (rt) or debt (dt). Notably, these calculations are based on analytical

formulas derived from the model—once it is solved—rather than on Monte-Carlo simu-

lations.17 In the remaining of this paper, we consider the following set of performance

measures:

17Bernaschi, Missale, and Vergni (2009) discuss potential issues arising from simulation-based frame-
works.
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• Average debt-to-GDP ratio and average debt service

These metrics, denoted by E(dt) and E(rt), are expressed as fractions of GDP. Both

criteria reflect the funding costs associated with the different strategies. Although

these two metrics are tightly connected with each other, they are not equivalent due

to nonlinearities involved in the debt-to-GDP ratio dynamics.

• Debt volatility

Debt volatility is measured by
√

Var(dt) and
√

Var(∆dt). While the former cap-

tures the dispersion of debt-to-GDP values, the latter characterizes the volatility of

changes in the indebtedness from one year to the other.

• Upper tail of the debt-to-GDP distribution

The 95th percentile of the debt-to-GDP distribution, denoted by q95(dt), is used to

characterize the right tail of the debt distribution.

• Debt service volatility

The debt service volatility is measured by
√

Var(rt). Consistently with interna-

tional debt accounting standards, debt service include debt indexation (to inflation

and GDP).

• Credit risk

Credit risk is measured by the average 10-year probability of default. It is formally

given by E(P(Dt+10|Dt = 0, zt)); we denote it by P(PD) in tables and figures.

• Credit-risk costs

Credit risk costs are measured by the average 10-year credit spread, that is formally

given by E(yt,10 − y∗t,10), where yt,10 is the yield-to-maturity of a defaultable zero-

coupon nominal bond of maturity 10 years, and where y∗t,10 is the yield-to-maturity

of an equivalent nondefaultable bond (featuring a recovery rate RR of 1). It is de-

noted by E(spd) in figures and tables.
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Most of these measures do not represent purely cost or risk metrics. For example,

the 95th percentile of the debt-to-GDP distribution of the average probability of default

are influenced not only by the average cost associated with a particular strategy but also

by the volatility of interest rates, inflation, GDP growth, the budget surplus and, more

generally, by the dynamic covariances between these variables.

Our metrics are unconditional; they reflect an average situation. An alternative would

be to consider the calculation of performance measures that are conditional on a spe-

cific situation—characterized by a given debt and debt service, say. For instance, instead

of computing the average 10-year default probability E(P(Dt+10|Dt = 0, zt)), we could

consider the probability of default conditional on a given state zt, i.e., P(Dt+10|Dt = 0, zt).

It may indeed be the case that some strategies are better to deal with some specific situ-

ations (in the medium run). While this type of analysis can be carried out by using the

present framework, it is beyond the scope of the present paper.

4.2. Insights from stylized economies

Before presenting the results of our baseline calibration (in Subsection 4.3), this sub-

section highlight key insights in the context of two simplified economies that are almost

identical, with the exception of the correlation between inflation and GDP growth.

4.2.1. Presentation of the two economies

The first economy is influenced by demand shocks, exhibiting a positive correlation

between inflation and GDP growth. In contrast, the second economy is characterized by

supply shocks, resulting in a negative correlation between inflation and GDP growth. The

selection of these two economies is guided by the significant implications that the relative

importance of demand and supply shocks has on the term structure of bond returns (e.g.,

Rudebusch and Swanson, 2012; Campbell et al., 2017; Bekaert et al., 2021).18

The parameterizations of these two economies are close (see Table 2). Both economies

comprise three regimes representing low, medium, and high output growth, with identi-

cal transition probabilities. Inflation rates also have three distinct values (low, medium,

18For a discussion on the significance of the relative impact of demand and supply shocks on debt man-
agement, see also Missale (2012).
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and high). However, in the demand-driven economy, high inflation and high output

growth occur within the same regime, while this relationship is reversed in the supply-

driven economy.

Table 2: Stylized models: parameterizations

Regime µπ µy Ω
D S

1 0.000 0.060 0.000 0.800 0.200 0.000
2 0.030 0.030 0.020 0.100 0.800 0.100
3 0.060 0.000 0.040 0.000 0.200 0.800

Notes: This table shows the parameterizations of the stylized demand/supply models. We also have α =
0.10, β = 0.10, γ = 10, β = 0.10, d∗ = 1.00, s∗ = −0.08, σν = 0.10, νπ = 0.00, RR = 0.50.

4.2.2. Term structures of bond returns

To gain insight into bond prices in these economies, which will determine the govern-

ment’s funding costs, we compute the returns associated with different types of bonds

(nominal, inflation-linked, and GDP-linked) and different maturities. To facilitate the

comparison, we focus on the annualized expected nominal returns of these bonds (until

maturity).19 For a nominal bond, this measure coincides with the yield-to-maturity of

the bond; for an inflation-linked bond, this is close to the sum of the bond real rate and

the annualized expected inflation until maturity. At this point, we abstract from credit

risk (considering, e.g., that α = 0 in eq. 13); accordingly, bond prices depend only on the

macroeconomic regimes mt.

Figure 4 displays the resulting term structures of expected returns. The average term

structures of expected returns for inflation-linked bonds (ILBs) and GDP-linked bonds

(GDP-LBs) are relatively similar when comparing the two economies. This is because

the payoffs of both ILBs and GDP-LBs are protected against inflation, which is the sole

distinction between the two economies. The term structure of ILB returns is downward

sloping across maturities, a characteristic commonly observed for the term structure of

real rates in simple equilibrium models (see, e.g., Piazzesi and Schneider, 2007).20 In

19See the caption of Figure 4 for computational details.
20This occurs because, in these equilibrium models (as is the case in the present stylized economies), real

rates are typically positively correlated with output growth. Consequently, the prices of inflation-linked
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contrast, the returns on nominal bonds vary significantly between the two models (in-

dicated by blue lines): in the demand-driven economy, nominal bond returns are low

and display a downward-sloping term structure due to negative inflation risk premi-

ums. Conversely, in the supply-driven economy, positive inflation risk premiums lead

to high nominal yields and an upward-sloping term structure. This disparity arises be-

cause, when demand shocks are prevalent, long-term nominal bonds tend to yield higher

returns during unfavorable economic conditions (since inflation is typically low in peri-

ods of low growth). Consequently, investors are more inclined to purchase these bonds

despite the low returns, particularly for long-term nominal bonds, which explains the

negative slope of the term structure in the demand-driven economy.

Naturally, introducing credit risk (by setting α > 0 in eq. 13) drives credit spreads

between the returns examined above—free of credit risk—and government returns. Fig-

ure 4 shows for instance the change in nominal yields when α goes from 0 (blue solid

line) to 0.1 (blue dashed line). It appears that average credit spreads are higher in the

context of the supply-driven economy, which reflects the fact that default probabilities

are lower in the context of the demand-driven economy if the government issues nom-

inal perpetuities—funding costs associated with nominal securities are indeed low in

demand-driven economies.21

The macroeconomic impact of a sovereign default, captured by νy and νπ (see eq. 15),

can also affect the performance of issuance strategies due to its influence on the dynamics

of security pricing. When νy < 0, a sovereign default leads to a drop in consumption,

classifying it as a “disaster” in the sense of Barro (2006) or Gabaix (2012). In this situ-

ation, as discussed in Renne and Pallara (2024), an increase in debt has two opposing

effects on government bond yields: the elevated probability of disaster tends to reduce

risk-free rates, while the credit spread component of the government yield increases. In

bonds (ILBs) tend to rise during recessions, providing them with an insurance value that increases with
the bond’s maturity. As a result, investors are willing to purchase long-term ILBs even if they offer lower
returns compared to short-term ILBs, leading to downward-sloping term structures (see Campbell, 1986).

21Credit spreads are influenced by the type of perpetuities issued by the government. Here, we consider
the prices of nominal zero-coupon bond in an economy where the government issues nominal perpetuities
with a given duration; the prices of the same type of nominal zero-coupon bonds would be different if the
government was issuing other types of perpetuities (because credit risk would then be different).
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certain cases, the first effect can dominate the second, meaning that increased debt can

lead to a decrease in government yield, thereby reducing the usual snowball effect. This

is illustrated by Figure 3 that shows, for our two economies, the relationship between the

debt-to-GDP ratio and yields-to-maturity of two types of nominal perpetuities: the first

is a counterfactual risk-free perpetuity (i.e., with a recovery rate RR = 1) and the second

is the perpetuity issued by the government (RR < 1). When νy = 0 (left-hand plots),

risk-free returns are independent of debt levels and depend solely on the three macro

regimes mt, as represented by the three horizontal grey lines. Meanwhile, government

rates increase with indebtedness due to the credit spread component. However, when a

sovereign default leads to a 10% reduction in consumption (νy = −0.10, right-hand plots),

risk-free rates are negatively affected by dt, which drives government rates down despite

the rise in the credit spread component.

4.2.3. Debt-management performances

Table 3 shows the performances of issuance strategies that consist in issuing three

basic types of perpetuities: a nominal one (κπ = 0 and κy = 0), an inflation-linked one

(κπ = 1 and κy = 0), and a nominal-GDP-linked one (κπ = 1 and κy = 1), in the context of

the two stylized economies. We also consider two different values of χ: 0.2 (low duration,

upper panel of the table) and 0.9 (high duration, lower panel).

The average debt service is tied to the average returns of issued perpetuities. Typically,

in the context of the demand-driven economy, we expect lower average funding costs

when nominal perpetuities are issued (κπ = 0 and κy = 0) since nominal-bond yields are

particularly low in this context (see Figure 4). Moreover, since the average term structure

of nominal-bond yields is then downward-sloping, the higher χ—i.e., the long the per-

petuity duration—the lower the debt service. More generally, we expect the respective

locations of the yields shown in Figure 4 to play a determining role in the ranking of the

average debt/GDP ratios associated with the different issuance strategies.

The previous reasoning is confirmed by the columns E(d) and E(r) of Table 3. For

instance, the issuance of nominal perpetuities yields the cheapest (respectively most ex-

pensive) funding costs in the context of a demand-driven (supply-driven) economy.
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Figure 3: Effect of νy on the relationship between debt and perpetuities’ prices.
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Note: This figure illustrates the relationship between indebtedness and the yield-to-maturity of perpetuities.
We examine two types of perpetuities: a hypothetical risk-free one and the one issued by the government.
The government issues nominal perpetuities, characterized by (χ, κπ , κy) = (0.7, 0, 0). The specifications
for the two models, demand-driven and supply-driven, are detailed in Table 2. The models underlying the
left and right plots differ in the parameter νy, as indicated in the plot titles.

In line with the literature supporting the issuance of GDP-linked bonds for their sta-

bilization properties, our findings indicate that issuing GDP-linked bonds results in less

volatile debt, as shown in the columns
√

V(d) and
√

V(∆d) in Table 3. However, since

investors demand higher return to hold these bonds (as their returns are procyclical),

the associated average debt-to-GDP ratios turn out to be relatively high, implying poor

overall performances. More specifically, issuing GDP-LBs is the worst strategy in term of

sovereign credit risk in the context of a demand-driven economy, and it is dominated by

the ILB-based strategy in the supply-driven economy—see column E(PD).

Contrary to GDP-LBs and ILBs, the performances of the nominal perpetuity strategy

strongly depends on the nature of the shocks driving the economy. More precisely, while
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nominal bonds achieve the lowest levels of cost and risk when demand shocks prevail, it

is the opposite when supply shocks prevail. The differences in the performances of nom-

inal perpetuities—between the demand-driven and the supply-driven economies—are

particularly marked when considering large debt duration (χ = 0.9, lower panel). This

is because, when the debt duration is low, the debt service associated with nominal per-

petuities is tied to the short term rate, which is itself correlated to nominal GDP growth.

When nominal perpetuities with longer durations are issued, the debt service correlate

to a persistent moving average of previous long-term rates. The correlation of the debt

service with the nominal GDP is then weaker, limiting the hedging capacity stemming

from interest payments.

Figure 4: Average returns in the stylized economies (demand-driven and supply-driven)
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Note: This figure shows the average expected nominal returns in the context of the demand-driven and
supply-driven economies presented in Subsection 4.2. That is, consider a bond that provides a payoff
of Πκπ

t+hY
κy
t+h/(Πκπ

t Y
κy
t ) (expressed in currency units) on date t + h; denoting its date-t price by Bt,h, the

expected nominal payoff is given by Et(Πκπ
t+hY

κy
t+h)

/
(Bt,hΠκπ

t Y
κy
t ). The shaded areas indicate the one-

standard-deviation areas; they give a sense of the volatility of the returns; for readability, they are given
for nominal and GDP-LBs only. The term structures represented by solid lines are computed in the absence
of credit risk (α = 0). The blue dashed line represents the term structure of government bond zero-coupon
nominal yields in a context with credit risk (α > 0), when the government issues perpetuities defined by
(κπ , κy, χ) = (0, 0, 0.7) (these therefore are nominal perpetuities).
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Table 3: Performances of debt issuance strategies in stylized versions of the model, µη = 0 × µy and νy = 0

E(d)
√

V(d) q95(d) E(r)
√

V(r)
√

V(∆d) E(PD) E(spd)

Coupon decay rate χ = 0.2

Demand-driven economy (χ = 0.2)
Nominal 85.94 8.26 98.05 4.18 1.82 3.01 0.94 6.98
ILB 89.78 6.48 98.57 4.94 2.45 2.35 1.28 7.44
GDP-LB 94.58 5.55 99.97 5.65 3.14 2.38 2.30 11.59

Supply-driven economy (χ = 0.2)
Nominal 97.18 7.49 107.40 6.08 0.77 2.39 3.58 17.18
ILB 89.79 6.50 98.59 5.04 1.42 2.35 1.28 7.46
GDP-LB 94.97 5.24 100.01 5.77 0.76 2.36 2.38 11.99

Coupon decay rate χ = 0.9

Demand-driven economy (χ = 0.9)
Nominal 76.52 11.76 93.30 2.82 0.36 3.03 0.44 3.78
ILB 84.71 8.00 96.03 4.16 1.64 2.33 0.73 4.64
GDP-LB 94.38 5.94 100.95 5.68 3.21 2.38 2.31 11.56

Supply-driven economy (χ = 0.9)
Nominal 100.96 8.18 112.55 6.63 0.65 2.28 5.38 25.31
ILB 85.25 8.48 98.14 4.36 1.95 2.33 0.90 5.68
GDP-LB 94.36 5.67 100.40 5.72 0.73 2.36 2.26 11.31

Notes: This table shows performance metrics associated with three different debt issuance strategies; each
strategy consists in issuing a given type of perpetuities: a nominal perpetuity (κπ = 0 and κy = 0), an
inflation-indexed perpetuity nominal (κπ = 1 and κy = 0), and a GDP-indexed perpetuity nominal (κπ = 1
and κy = 1). We consider two different values of χ (the higher χ, the higher the average debt maturity). ’d’
denotes the debt-to-GDP ratio. ’r’ denotes the debt service, including debt indexation (in percent of GDP).
’
√

V(x)’ corresponds to the standard deviation of variable x; ’PD’ stands for ’10-year probability of default’
(expressed in percent); ’spd’ stands for ’10-year credit spread’ (expressed in basis point), ’q95(d)’ is the 95th

percentile of the debt-to-GDP distribution.
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The previous results are obtained when their is no indexation of the surplus on real

activity (i.e., µη = 0 × µy in eq. 16) and with no macroeconomic feedback of a sovereign

default (νy = νπ = 0 in eq. 15). Appendix V reports results obtained when µη = 1 × µy

and νy = −10%. These additional results are qualitatively similar to those presented ear-

lier; in particular, the performance rankings of the various strategies remain unchanged.

4.3. A calibrated economy

This section presents the results obtained in the context of an economy calibrated us-

ing U.S. data. Subsection 4.3.1 describes the calibration approach. Subsection 4.3.2 dis-

cusses the performances of different issuance strategies within this model.

4.3.1. Calibrating the model

The calibration involves the following parameters: those characterizing the dynamics

of inflation and output growth (Π, µπ, and µz, see eq. 15), the macroeconomic impact of a

sovereign default (νy and νπ), the coefficient of risk aversion (parameter γ of Epstein-Zin

preferences, see Appendix II), the specification of the conditional probability of default (α

and d∗, see eq. 13), the debt correction term in the fiscal reaction function (β in eq. 16).

Some of these parameters, namely νy, νπ, and γ, are taken from the literature. We set

νy to −5%, which is broadly in line with the average recessionary effect associated with

sovereign defaults found by Mendoza and Yue (2012) and Reinhart and Rogoff (2011).

The inflationary effect of a default (νπ) is set to −2.1%, which is the average inflationary

effect of a disaster used by Gabaix (2012). We set the coefficient of risk aversion to 10,

a value also used by Bansal and Yaron (2004). Finally, in line with the estimates of van

den Noord (2000), we consider that a one-percent increase in output improves the budget

surplus by 0.5 percentage points, i.e., µη = 0.5 × µy (see eq. 16).

The estimation of Π, µπ, and µz is the core step of the calibration process. With nm

macroeconomic regimes, there are nm(nm + 1) parameters to estimate, amounting to 30

parameters for 5 regimes. The dynamics of macroeconomic variables has a critical im-

portance to shape bond returns in the context of an equilibrium model such as ours.22

22According to Piazzesi and Schneider (2007), an equilibrium model is an asset pricing model charac-
terized by (i) macroeconomic dynamics, particularly the dynamics of consumption, and (ii) agents’ prefer-
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Consequently, to ensure that the estimated macroeconomic dynamics yield realistic secu-

rity prices, we incorporate yield curve data, alongside macroeconomic data, to guide the

calibration of Π, µπ, and µz. Besides, we employ an approach that places emphasis on

both the macro-finance fluctuations and the average values of the yield curve. It is indeed

critical to have a model that is consistent with plausible average bond returns. For ex-

ample, if the parameterized model produces long-term real yields that are significantly

lower than those observed in reality, it could lead to misleading conclusions when evalu-

ating issuance strategies; this would indeed create the illusion of artificially low funding

costs associated with issuing long-term ILBs.

In practice, denoting the vector of parameters to be estimated by Θ, we achieve our

dual objective of capturing both macroeconomic fluctuations and long-term values by

minimizing a loss function L(Θ) = − logL(Θ) + d(Θ), where (i) logL(Θ) is the log-

likelihood function, which assesses the alignment of the parameterization with observed

dynamics (the Hamilton, 1986, filter is used to compute this function), and (ii) d(Θ) is

a measure of the distance between model-implied and targeted moments. Additional

details regarding the estimation are provided in Appendix IV.

The resulting parameterization is displayed in Table 4. Table 5 documents the fit corre-

sponding to the moment-matching part of the loss function. Figure 5 illustrates the time-

series fit stemming from the Hamilton (1986) filter. Given the relatively small number of

macroeconomic regimes (nm = 5), the fit is necessarily imperfect. Using a small number

of regimes is however consistent with our primary objective of capturing the main driv-

ing forces behind the joint fluctuations in macroeconomic variables and bond yields in a

parsimonious and robust way. Figure 6 illustrates the model-implied term structures of

average expected nominal returns for basic zero-coupon bonds, including nominal bonds,

inflation-linked bonds (ILBs), and GDP-linked bonds (excluding credit risks). Notably,

ences. In this framework, the dynamic behavior of macroeconomic variables affects the risk premiums that
agents require for holding the various assets examined.
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the right-hand plot shows that, in the calibrated economy, investors would require signif-

icant excess returns—averaging over 200 basis points—to hold GDP-linked bonds.23

We next turn to the calibration of the remaining parameters. These includes β and s∗,

that define the fiscal reaction function (eq. 16), as well as α, d∗ and σν, that are, respectively,

the sensitivity of the probability of default to debt, the debt threshold, and the uncertainty

regarding the latter (see eq. 13). These parameters are critical to convert a given state into

probabilities of default and credit spreads. We set σν to 10%, which is consistent with the

order of magnitude of the uncertainty surrounding fiscal-limit estimates (see for instance

Pallara and Renne, 2024). For the other parameters, we evaluate a range of values for each

and seek the overall best fit for the following moments: the average 10-year credit spread

(targeting 20 basis points) and the average and standard deviation of the debt-to-GDP

ratio (with targets set at 80% and 15%, respectively).

Table 4: Model parameterization

Regime µπ µy Ω
1 0.030 0.060 0.867 0.133 0.000 0.000 0.000
2 −0.016 −0.100 0.715 0.118 0.167 0.000 0.000
3 0.073 0.014 0.029 0.000 0.962 0.008 0.000
4 0.034 0.035 0.000 0.063 0.275 0.634 0.028
5 0.022 0.019 0.001 0.196 0.000 0.051 0.752

Notes: This table shows the model parameterization of the baseline model. We also have: α = 0.1, β = 0.20,
γ = 10, δ = 0.99, d∗ = 1.10, s∗ = −0.176, νy = −0.050, νπ = −0.021, µη = 0.5 × µy, RR = 0.50.

4.3.2. Performance of debt issuance strategies in the calibrated model

This section presents the performances of different issuance strategies implemented

in the context of the calibrated model. The results are shown in Figure 7 and Table 6.

On each plot of Figure 7, a dot corresponds to a given strategy, characterized by an

inflation indexation (κπ), a real GDP indexation (κy), and an average maturity (captured

by the coupon decay rate χ). We consider three values of χ: 0.1, 0.5, and 0.9. For a nominal

yield-to-maturity of 6%, these values would correspond to durations of about 1, 2, and

23This estimate is at the upper end of the range of values available in the literature. For example,
Mouabbi et al. (2024), Blanchard et al. (2016), Kamstra and Shiller (2009) obtain estimates of 40, 100 and
150 basis points, respectively.
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Figure 5: Model fit
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Note: This figure shows the fit resulting from the parameterization reported in Table 4, using the Hamilton
(1986) filter. Yields are yields-to-maturity associated with zero-coupon bonds. Yields come from the Board
of the Federal Reserve Bank, that publishes updates of yields computed by (Gürkaynak et al., 2007). The
sample period is 1970-2023. See Subsection 4.3.1 for additional details on the estimation procedure. Inflation
and output growth depend on mt, a Markovian regime-switching chain (see Subsection 3.4.2). Nominal
yields are derived from an equilibrium asset-pricing model; that is, their dynamics result from those of the
macroeconomic variables and agents’ preferences (see Subsection 3.3.1).

30



Table 5: Model-implied versus targeted moments

Moment Model Target
Avg. slope of nominal yield curve (1y-10y) 0.012 0.011
Avg. 10-year nominal yield 0.059 0.060
Avg. slope of real yield curve (2y-10y) 0.003 0.009
Avg. 10-year real yield 0.015 0.014
Avg. inflation 0.044 0.039
Avg. real GDP growth 0.029 0.027
Std dev. of 10-year nominal yield 0.027 0.030
Std dev. of 10-year real yield 0.007 0.013
Avg. breakeven 0.000 0.000

Notes: This table compares model-implied with targeted moments. The distance between these moments is
part of the loss function that is minimized to estimate the components of µπ , µy, and Ω. See Subsection 4.3.1
for more details.

Figure 6: Average nominal and real yield curves
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Note: This figure displays unconditional returns of zero-coupon bonds resulting from the model whose
parameterization is reported in Table 4. The left plot shows term structures of yields-to-maturity (real
yields for ILBs, and nominal yields). The right plot displays the expected annualized nominal returns
over the bond maturity; more precisely, consider a bond characterized by (κπ , κy), this return is given by
−1/h(1/Bt,h) log Et((Πκπ

t+hY
κy
t+h)/(Π

κπ
t Y

κy
t )). (Indeed, the maturity nominal payoff of the bond is Πκπ

t+hY
κy
t+h,

and the price, on date t, is Πκπ
t Y

κy
t Bt,h.) Shaded areas indicate one-standard-deviation areas. These returns

do not include credit risk (i.e., α = 0 in eq. 13).
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6 years. We consider coefficients of indexations to inflation comprised between 0 and 1,

but we limit the range of the coefficients to real GDP to (0, 0.3) since larger coefficients

of indexation lead to poor cost and risk performances due to the large risk premiums

associated with GDP indexation. On the plots, the x-axis corresponds to a cost measure,

namely the average debt-to-GDP; the y-axis corresponds to a risk measure: the standard

deviation of the debt-to-GDP ratio for Panel (a), the 95th percentile of the debt-to-GDP

ratio distribution for Panel (b), and the 10-year probability of default for Panel (c).

Table 6 reports the performances of a few basic strategies presenting the lowest/highest

χ, κπ, and κy. Moreover, the last three rows of the table show the results associated with

those of the considered strategies that yield the best performances in terms of debt volatil-

ity (
√

V(d)), 95th debt distribution percentile (q95(d)), and 10-year probability of default

(E(PD)).

Table 6: Performances of debt issuance strategies in the calibrated model

(χ, κπ, κy) E(d)
√

V(d) q95(d) E(r)
√

V(r)
√

V(∆d) E(PD) E(spd)
(0.1, 0.0, 0.0) 80.25 13.07 99.31 3.97 3.73 7.52 0.20 9.08
(0.1, 0.0, 0.3) 82.91 11.09 99.39 4.75 3.22 6.98 0.19 5.94
(0.1, 1.0, 0.0) 82.22 11.54 99.26 4.70 3.36 6.96 0.18 4.68
(0.1, 1.0, 0.3) 86.22 9.20 100.30 5.69 2.80 6.18 0.22 4.30
(0.9, 0.0, 0.0) 84.44 10.77 101.49 4.97 1.91 8.51 0.41 23.03
(0.9, 0.0, 0.3) 86.71 9.47 102.00 5.57 1.85 7.42 0.39 17.14
(0.9, 1.0, 0.0) 84.40 10.05 99.38 5.04 2.68 7.21 0.22 7.66
(0.9, 1.0, 0.3) 93.01 9.44 106.30 7.41 2.99 6.10 0.73 16.87
(0.9, 0.6, 0.3) 88.55 8.58 101.10 6.10 2.23 6.46 0.33 10.87
(0.9, 0.4, 0.0) 83.77 9.96 98.61 4.90 2.09 7.49 0.25 13.49
(0.1, 1.0, 0.0) 82.22 11.54 99.26 4.70 3.36 6.96 0.18 4.68

Notes: This table shows performance metrics associated with different debt issuance strategies characterized
by the issuance of perpetuities of different durations (captured by the coupon decay rate χ), a coefficient
of indexation to inflation κπ and a coefficient of indexation to real GDP κy. The model is the one whose
parameterization is reported in Table 4. ’d’ denotes the debt-to-GDP ratio. ’r’ denotes the debt service,
including debt indexation (in percent of GDP). ’

√
V(x)’ corresponds to the standard deviation of variable x;

’PD’ stands for ’10-year probability of default’ (expressed in percent); ’spd’ stands for ’10-year credit spread’
(expressed in basis point), ’q95(d)’ is the 95th percentile of the debt-to-GDP distribution. The last three rows
show the performances of the strategies implying the lowest

√
V(d), q95(d), and E(PD), respectively.

Let us start with two general observations. First, there are significant differences in

the performance of various strategies. For example, the gap between the best and worst

performers in terms of the average debt-to-GDP ratio is 15 percentage points, and 10
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percentage points when considering the 95th percentile of the debt distribution (see Fig-

ure 7). Second, the ranking of strategies varies depending on the risk measure used.

While strategies with greater indexation to real GDP result in a less dispersed debt dis-

tribution (
√

V(d)), they perform relatively poorly for the other two risk measures, which

are more relevant for assessing debt sustainability. This is because real GDP indexation

incurs high funding costs, shifting the debt distribution to the right, similar to findings

by Mouabbi, Renne, and Sahuc (2024).

Our results suggest that the strategies minimizing the right tail of the debt-to-GDP dis-

tribution and the average probability of default do not involve any GDP indexation. By

contrast, the lowest risk measures are associated with strategies characterized by signifi-

cant inflation indexation—approximately 40% for q95(d) and 100% for E(PD). Consistent

with the upward-sloping term structures of returns, the average debt level increases with

debt maturity (determined by χ). While a large debt maturity is necessary to minimize

q95(d), the minimum average probability of default occurs with the smallest maturity.

5. Concluding remarks

This paper presents an analytical framework to examine how government debt struc-

ture impacts debt sustainability, considering three key features of the debt portfolio: av-

erage maturity, inflation indexation, and GDP indexation. Our macro-finance framework

addresses the interplay between debt accumulation and bond prices in a context entail-

ing risk averse investors. The model handles exogenous macroeconomic shifts, making it

suitable for real data application.

Our findings indicate that the assessment of the effectiveness of different debt issuance

strategies depends significantly on the underlying model that produces the joint dynam-

ics of security prices and macroeconomic variables such as inflation, real output, and

budget surplus. We document, in particular, the strong influence that the correlation be-

tween inflation and GDP growth have on the cost and risk performances of nominal debt.

A quantitative exercise based on calibrating the model with US data suggests that index-

ation to inflation—but not to real GDP—of the US debt portfolio helps to reduce the right

tail of the distribution of debt-to-GDP ratios (compared with no indexation).
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Figure 7: Cost and risk performances of debt issuance strategies
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Note: This figure illustrates the cost and risk performances of different debt issuance strategies. On each
plot, a dot corresponds to a given strategy. A strategy is defined by three characteristics: an inflation
indexation (κπ), a real GDP indexation (κy), and an average maturity (captured by the coupon decay rate
χ). (See Subsection 3.2.1 for a description of the securities issued by the government.) The performances are
measured by means of unconditional moments; the x-axis corresponds to a cost measure (average debt-to-
GDP); the y-axis corresponds to a risk measure: standard deviation of the debt-to-GDP ratio for Panel (a),
95th percentile of the debt-to-GDP ratio distribution for Panel (b), and 10-year probability of default for
Panel (c).
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— Appendix —

An Analytical Framework for Public Debt Management

Jean-Paul RENNE

I. Proofs of Section 3

I.1. Proof of Proposition 1

This proof is an extension of Renne and Pallara (2024) to the case where the government issues

indexed debt.

Let us denote by It the proceeds of date-t issuances and by Xt the resulting first payments

(settled on date t+ 1), both It and Xt being expressed in units of the composite index. By definition

of qt, we have:

It =
∞

∑
j=1

χj−1Xt

(1 + qt)j =
Xt

1 + qt − χ
.

Consider the date-t (residual) face value of the issuances that took place on date t − h. According

to the concept of nominal valuation of debt securities (see International Monetary Fund, Bank for

International Settlements and European Central Bank, 2015), this face value is computed as the

sum of future associated payoffs χhXt−h, χh+1Xt−h, . . . , discounted using the issuance yield-to-

maturity qt−h—that materialized on date t − h. This is equal to χh It−h. As a consequence, and

because current debt Dt is the sum of the (residual) face values of all past issuances (for h ≥ 0),

we obtain:

Dt = It + χIt−1 + χ2 It−2 + · · · = It + χDt−1. (I.1)

Using Xt = (1 + qt − χ)It = (1 + qt − χ)(Dt − χDt−1), past debt issuances give rise to the

following debt payments on date t + 1:

CFt+1 = Xt + χXt−1 + χ2Xt−2 + . . .

= (1 + qt − χ)(Dt − χDt−1) +

χ(1 + qt−1 − χ)(Dt−1 − χDt−2) + χ2(1 + qt−2 − χ)(Dt−2 − χDt−3) + . . .

= Dt − χDt + qt(Dt − χDt−1) + χqt−1(Dt−1 − χDt−2) + χ2qt−2(Dt−2 − χDt−3) + . . . (I.2)



Let us now take a cash-flow perspective. On date t, the sum of the issuance proceeds (Πκπ
t Yκy

t It)

and of the primary budget surplus (St) has to equate date-t payments associated with previous

issuances (Πκπ
t Yκy

t CFt). That is:

Πκπ
t Yκy

t It = Πκπ
t Yκy

t CFt − St. (I.3)

Using Eq. (I.1), we get:

Πκπ
t+1Yκy

t+1Dt+1 = (It+1 + χDt)Πκπ
t+1Yκy

t+1 = Πκπ
T+1Yκy

t+1CFt+1 − St+1 + χDtΠκπ
t+1Yκy

t+1 (I.4)

Substituting for CFt+1 (Eq. I.2) into Eq. (I.4), we have:

Πκπ
t+1Yκy

t+1Dt+1 (I.5)

= Πκπ
T+1Yκy

t+1Dt − St+1 +

+Πκπ
T+1Yκy

t+1

(
qt(Dt − χDt−1) + χqt−1(Dt−1 − χDt−2) + χ2qt−2(Dt−2 − χDt−3) + . . .︸ ︷︷ ︸

interest payments on date t + 1 ≡ Rt+1

)
,

which gives
D($)

t+1 = D($)
t exp(κππt+1 + κy∆yt+1)− St+1 + R($)

t+1

R($)
t+1 = qt exp(κππt+1 + κy∆yt+1)

[
D($)

t − χD($)
t−1 exp(κππt + κy∆yt)

]
+

χR($)
t exp(κππt+1 + κy∆yt+1),

(I.6)

where D($)
t+1 = Πκπ

t+1Yκy
t+1Dt+1/(Πt+1Yt+1) and R($)

t+1 = Πκπ
t+1Yκy

t+1Rt+1/(Πt+1Yt+1).

Using dt = D($)
t /(ΠtYt), rt = R($)

t /(ΠtYt), and rt = rt + (ζt − ζ
t
)dt−1 leads to Proposition 1.

I.2. Proof of Proposition 2

Let us determine how Pt depends on qt+1. On date t + 1, the payoff of the perpetuity is: 1 + χPt+1 if Dt+1 = 0,

RR + E
(
∑∞

h=2 Mt+1,t+hχh−1RR|Dt+1 = 1, zt+1
)

if Dt+1 = 1.
(I.7)

This payoff can also be written as follows: 1 + χPt+1 if Dt+1 = 0,

RR(1 + χP t+1) if Dt+1 = 1,
(I.8)
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where

P t = E

(
∞

∑
h=1

Mt,t+hχh−1
∣∣∣Dt = 1, zt

)
.

Using (I.8) with the SDF specification (10), and noting that 1 + χPt+1 = 1+qt+1
1+qt+1−χ , we have:

Pt = E (Mt,t+1 [Dt+1RR (1 + χP t+1) + (1 −Dt+1)(1 + χPt+1)] |Dt = 0, zt)

= E

(
e f (zt,zt+1)

[
Dt+1

(
RReµ′

νzt+1(1 + χP t+1)−
1 + qt+1

1 + qt+1 − χ

)
+

1 + qt+1

1 + qt+1 − χ

]∣∣∣∣Dt = 0, zt

)
.

Eq. (11) is obtained by rearranging the terms of the previous equation, using Pt = 1/(1 + qt − χ),

and Pt+1 = 1/(1 + qt+1 − χ).

I.3. Post-default prices of bonds and perpetuities

Proposition 4. The post-default price of a zero-coupon bond of maturity h is given by:

Bh(mt) = 1′
[
D(exp(µ f ,1))Ω′] [D(exp(µ f ,0 + µ f ,1))Ω′]h−1 [D(exp(µ f ,0))

]
mt, (I.9)

where 1 = [1, . . . , 1]′, where D(x) denotes a diagonal matrix whose diagonal entries are the entries of vector

x, and where by abuse of notation, exp(x) is applied element-wise when x is a vector.

The post-default price of the perpetuity, that is

P t = E

(
∞

∑
h=1

Mt,t+hχh−1
∣∣∣Dt = 1, zt

)
,

is given by

P(mt) = 1′
[
D(exp(µ f ,1))Ω′] [Id − χD(exp(µ f ,0 + µ f ,1))Ω′]h−1 [D(exp(µ f ,0))

]
mt. (I.10)

(Note that mt is included in zt.)

Proof. First, note that after default, debt dynamics are no longer important in determining bond

prices. Consequently, the relevant pricing information, in zt, is confined to mt.

We have:

Bh(zt) = E(Mt,t+h|Dt = 0, zt)

= E(exp(µ′
f ,0mt + (µ f ,0 + µ f ,1)

′[mt+1 + · · ·+ mt+h−1] + µ′
f ,1mt+h)|zt).

This leads to (I.9), using the results presented in Appendix A of Renne (2017).
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Using the same calculation, we get:

P t = 1′
∞

∑
h=1

χh−1 [D(exp(µ f ,1))Ω′] [D(exp(µ f ,0 + µ f ,1))Ω′]h−1 [D(exp(µ f ,0))
]

mt,

which gives (I.10).

I.4. Proof of Proposition 3

We have:

Bt,h = Et
(
exp ( ft+1 + νDt+1)

[
Bt+1,h−1(1 −Dt+1) + RRDt+1Bt+1,h−1

]
|Dt = 0

)
= Et

(
Dt+1 exp ( ft+1 + ν) RRBt+1,h−1|Dt = 0

)
+

Et ((1 −Dt+1) exp ( ft+1)Bt+1,h−1|Dt = 0)

= Et
(
exp( ft+1)Bt+1,h−1 +Dt+1 exp( ft+1)

[
eνRRBt+1,h−1 −Bt+1,h−1

]
|Dt = 0

)
,

which gives Eq. (12).

I.5. Term structure of default probabilities

Proposition 5. Denote by ph(zt) the horizon-h probability of default, that is:

ph(zt) ≡ E
(
Dt+h|Dt = 0, zt

)
.

These probabilities of default can be computed recursively, using:

ph(zt) = Et
(
Dt+1[1 − ph−1(zt+1)] + ph−1(zt+1)|zt,Dt = 0

)
, (I.11)

starting from p0(zt) ≡ 0.

Proof. We have:

ph(zt) = Et
(
Et+1

(
Dt+h|Dt = 0

)
|Dt = 0

)
= Et

(
Dt+1 + (1 −Dt+1)ph−1(zt+1)|Dt = 0

)
= Et

(
Dt+1[1 − ph−1(zt+1)] + ph−1(zt+1)|Dt = 0

)
,

which proves Eq. (I.11).
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II. Stochastic Discount Factor

This appendix explains how the SDF specification is obtained. Proposition 6 considers a situ-

ation where there is no feedback effect from a sovereign default on the macroeconomy (i.e., with

νy = νπ = 0 in eq. 15). Proposition 7, which considers the general case, uses Proposition 6 because

the latter describes the post-default situation (that is taken into account in the expected continua-

tion value).

Assumption 1. The preferences of the representative agent are of the Epstein and Zin (1989) type, with

a unit elasticity of intertemporal substitution (EIS). Specifically, the time-t log utility of a consumption

stream (Ct) is recursively defined by

ut = log Ut = (1 − δ)ct +
δ

1 − γ
log (Et exp [(1 − γ)ut+1]) , (II.1)

where ct denotes the logarithm of the agent’s consumption level Ct, δ the pure time discount factor and γ is

the risk aversion parameter.

Assumption 2. The log growth rate of consumption (∆ct) is given by µ′
ymt, where mt is a selection vector

following a homogeneous Markov-switching process characterized by a matrix of transition probabilities Ω

(the sum of the coefficients of each row of Ω is equal to one).

The following proposition gives the real SDF prevailing under the previous assumptions.

Proposition 6. Under Assumptions 1 and 2, the SDF is given by

Mr
t,t+1 = exp

[
µr

f ,0
′mt + µr

f ,1
′mt+1

]
,

where 
µr

f ,0 = log(δ)1 − log
{

exp((1 − γ)(µu + µy))′Ω′
}′

µr
f ,1 = (1 − γ)µu − γµy,

(II.2)

where µu, which is such that ut = ct + µu
′mt, satisfies:

µu =
δ

1 − γ
log
{

exp((1 − γ)(µu + µy))
′Ω′
}′

. (II.3)

Proof. When agent’s preferences are as in eq. (II.1), the SDF is given by (e.g., Piazzesi and Schnei-

der, 2007):

Mr
t,t+1 = δ

(
Ct+1

Ct

)−1 exp[(1 − γ)ut+1]

Et(exp[(1 − γ)ut+1])
. (II.4)

5



Let us first solve for the log-utility function. If ut is given by ut = ct + µu
′mt, we have:

ut+1 = ct + ∆ct+1 + µu
′mt+1 = ct + (µu + µy)

′mt+1.

Then, for a given state vector mt, we have:

eq. (II.1) ⇔ ct + µ′
umt = (1 − δ)ct + δct +

δ

1 − γ
log
{

exp((1 − γ)(µu + µy))
′Ω′
}

mt.

Therefore eq. (II.1) is satisfied for any state mt iff (II.3) holds.

Using the exponential affine formulation of the utility in (II.4) leads to:

logMr
t,t+1 = log δ − ∆ct+1 + (1 − γ)ut+1 − log Et(exp[(1 − γ)ut+1])

= log(δ)− µ′
ymt+1 + (1 − γ)(µy + µu)

′mt+1

− log Et(exp
{
(1 − γ)

[
(µy + µu)

′mt+1
]}

)

= log(δ) +
[
(1 − γ)µu − γµy

]′mt+1 − log Et(exp
{
(1 − γ)

[
(µy + µu)

′mt+1
]}

)

= log(δ) +
[
(1 − γ)µu − γµy

]′mt+1 − log
{

exp((1 − γ)(µu + µy))
′Ω′
}

mt,

which gives the result.

If νπ ̸== 0 or νy ̸== 0 (see eq. 15), i.e., if the government default affects the macroeconomic

variables, then Assumption 2 is not satisfied. However, the previous situation will be useful in the

determination of the SDF in this more general situation (as it describes the post-default situation).

Let us replace Assumption 2 with the following one:

Assumption 3. The log growth rate of consumption (∆ct) is given by ∆ct = µ′
ymt + νy∆Dt, where mt

and ẑt are selection vectors that are such that mt = Mẑt (i.e., ẑt contains the information regarding the

mt chain). ẑt follows a homogeneous Markov-switching process characterized by a matrix of transition

probabilities Ωz (the sum of the coefficients of each row of Ωz is equal to one). This is therefore also the case

of mt; the matrix of transition probabilities of mt is denoted by Ω (it derives from Ωz). The dynamics of Dt

depends on ẑt through: µ′
p ẑt = P(Dt+1 = 1|Dt = 0, ẑt).

Proposition 7. Under Assumptions 1 and 3, the SDF is given by

logMr
t,t+1 = µ̂r′

f ,0ẑt + µ̂r′
f ,1ẑt+1 + (µ̂r′

ν ẑt+1)∆Dt, (II.5)

6



where 
µ̂r

f ,0 = log(δ)1 − 1 − γ

δ
µ̂′

u

µ̂r
f ,1 = (1 − γ)µ̂u − γµ̂y

µ̂r
ν = (1 − γ)(µ̂u − µ̂u)′ ẑt+1 − γνc1.

(II.6)

where µ̂y = M′µy, and where µ̂u, which is such that ut = ct + µ̂′
u ẑt if Dt = 0, satisfies (when Dt = 0):

µ̂′
u ẑt =

δ

1 − γ
log(Et exp[(1 − γ)(µ̂u + µ̂y)

′ ẑt+1]×

{(exp[(1 − γ)(νc + (µ̂u − µ̂u)
′ ẑt+1)]− 1)∆Dt+1 + 1}), (II.7)

and with µ̂u = M′µu, where µu is obtained by applying Proposition 6.

Proof. Let us first solve for the log-utility function. We posit that ut is given by ut = ct + µ̂′
u ẑt as

long as Dt = 0 and by ut = ct + µ̂u
′ ẑt if Dt = 1. We then have:

ut+1 = (ct + ∆ct+1 + µ̂′
u ẑt+1)(1 −Dt+1) + (ct + ∆ct+1 + µ̂u

′ ẑt+1)Dt+1

= ct + ∆ct+1 + µ̂′
u ẑt+1 + [(µ̂u − µ̂u)

′ ẑt+1]Dt+1

= ct + (µ̂u + µ̂y)
′ ẑt+1 + νc∆Dt+1 + [(µ̂u − µ̂u)

′ ẑt+1]Dt+1

= ct + (µ̂u + µ̂y)
′ ẑt+1 + [νc + (µ̂u − µ̂u)

′ ẑt+1]∆Dt+1 if Dt = 0.

Then, for a given state vector mt, and assuming that Dt = 0, we have:

eq. (II.1) ⇔ ct + µ̂′
u ẑt = (1 − δ)ct +

δ

1 − γ
log(Et exp[(1 − γ)ut+1])

⇔ µ̂′
u ẑt =

δ

1 − γ
log(Et exp[(1 − γ){(µ̂u + µ̂y)

′ ẑt+1 + [νc + (µ̂u − µ̂u)
′ ẑt+1]∆Dt+1}]),

which leads to (II.7).

Using the exponential affine formulation of the utility in (II.4) leads to:

logMr
t,t+1 = log δ − ∆ct+1 + (1 − γ)ut+1 − log Et(exp[(1 − γ)ut+1])

= log(δ)− µ̂′
y ẑt+1 − νc∆Dt+1 + (1 − γ){(µ̂u + µ̂y)

′ ẑt+1 + [νc + (µ̂u − µ̂u)
′ ẑt+1]∆Dt+1}

− log Et

(
exp

{
(1 − γ){(µ̂u + µ̂y)

′ ẑt+1 + [νc + (µ̂u − µ̂u)
′ ẑt+1]∆Dt+1}

})
= log(δ) +

[
(1 − γ)µ̂u − γµ̂y

]′ ẑt+1 + [(1 − γ)(µ̂u − µ̂u)
′ ẑt+1 − γνc]∆Dt+1

− log(Et exp[(1 − γ){(µ̂u + µ̂y)
′ ẑt+1 + [νc + (µ̂u − µ̂u)

′ ẑt+1]∆Dt+1}])︸ ︷︷ ︸
= 1−γ

δ µ̂′
u ẑt

,

which proves (II.5).
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III. Numerical solution

This appendix describes the grid-based numerical strategy that we use to solve the model.

Solving for the model amounts to jointly determining function q(.) (see Proposition 2, and more

precisely eq. 11) and the SDF specification (8) (see Proposition 7, and more precisely eq. II.7).

To start with, we need to determine the information that should be in the state vector. Given

the dynamics (3)-(5), it comes that, for (zt,Dt) to be Markovian, the state needs to include dt,

dt−1, rt, and mt since these variables are necessary to predict dt+1 and rt+1 conditionally on the

information collected until date t. (Note that πt and ∆yt, and therefore ζt and ζ
t
, depend on mt,

see eq. 15.) These variables define the state vector zt: together, they turn out to be sufficient to

describe the state of the economy described in Subsections 3.1 to 3.4, with agents’ preferences are

of the Epstein-Zin type (with ∆ct = ∆yt, where ∆ct is the consumption growth).1

In Subsection III.1, we consider the case where νy = 0 and νπ = 0 (no direct macroeconomic

impact of a government default, see eq. 15). Subsection III.2 deals with the general case; it makes

use of the results presented in Subsection III.1 since the latter depicts the post-default situation,

that has to be taken into account in the continuation value (even when Dt = 0).

III.1. Case νy = 0 and νπ = 0

In that case, Proposition 6 shows that the SDF specification depends on mt only; solving for

the SDF is fast if the dimension of mt is limited (iterating on eq. II.3). It remains to solve for func-

tion q(.); the arguments of this function are (dt, dt−1, rt, mt). We employ a grid-based numerical

approach to approximate function q(.). Specifically, we consider some sets of values for dt, dt−1,

and rt: nd (identical) values for dt and dt−1, and nr values for rt. Consequently, and since mt is a

selection vector of dimension nm, the state space is approximated by a finite number of states, i.e.

nz := n2
d × nr × nm. Accordingly, we employ a nz-dimensional selection vector that we denote by

ẑt. On each date, this selection vector points to the prevailing regime—among the nz discretized

states. We can therefore define vectors µd, µd,−1 and µr such that, on any date t, dt, dt−1 and rt

are respectively approximated with µ′
d ẑt, µ′

d,−1ẑt, and µ′
r ẑt. Note that, although these vectors are

of dimension nz × 1 (with nz > nd and nz > nr), they respectively contain nd, nd, and nr different

entries.

1Assumptions 1 of Appendix II presents these preferences, for a unit elasticity of intertemporal substi-
tution.
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Recall that our objective is to solve for function q(.). That is, we need to find a vector µq that

is such that q(zt) ≈ µ′
q ẑt, where ẑt is the discretized version of zt (i.e., on any date t, we have

dt ≈ µ′
d ẑt, dt−1 ≈ µ′

d,−1ẑt, and rt ≈ µ′
r ẑt). The vector µq should approximately satisfy (11). We

employ the following algorithm to obtain an approximation to µq:

(S1) We start from an initial guess for µq, that we denote µ
(0)
q . This initial guess is obtained in the

case where there is no credit risk, in which case Pt = P t, where P t is a function of mt only

(see Proposition 4).

(S2) At the ith iteration, we approximate the right-hand side of (11) using qt+1 ≈ µ
(i−1)
q

′
ẑt+1, for

all current (discretized) state z∗t . This gives µ
(i)
q .

The critical task, in the computation of the right-hand side of (11) concerns the evaluation

of the expectation, that is:

Et

(
e f (zt,zt+1

[
Dt+1

(
RReνr(zt+1)(1 + χP(zt+1))−

1 + q(zt+1)

1 + q(zt+1)− χ

)
+

1 + q(zt+1)

1 + q(zt+1)− χ

])
,

where Et(.) = E(.|Dt, zt).

Let us detail on this computation. Exploiting the discrete nature of ẑt and ẑt+1, we can

evaluate the term within the expectation for each value of ẑt, ẑt+1, and Dt+1. Hence, an

approximation to the term within the expectation operator is of the form

ẑ′t[M1(µq)Dt+1 + M0(µq)(1 −Dt+1)]ẑt+1,

where M0(µq) and M1(µq) are two matrices of dimension nz × nz that depend in particular

on the macroeconomic dynamics (15). With these notations, it comes that the conditional

expectation appearing in (11) is of the form:

E(ẑ′t[M1(µq)Dt+1 + M0(µq)(1 −Dt+1)]ẑt+1|Dt = 0, ẑt).

Using the notation µ′
p ẑt+1 = P(Dt+1|Dt = 0, ẑt+1) (where µp stems from eq. 13), we obtain

the following approximate expression of the conditional expectation:

E(ẑ′t[M1(µq)D(µp) + M0(µq)(1 − D(µp))]ẑt+1|Dt = 0, ẑt)

= [M1(µq)D(µp) + M0(µq)(1 − D(µp))]Ω′
zzt, (III.1)
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where Ωz denotes the transition matrix of ẑt (the rows of Ωz sum to one) and where D(x)

denotes a diagonal matrix whose entries are the components of vector x.

Note that if nd and nr are large (to have sufficiently fine grids), then the dimension of Ωz is

very large, which can slow down the calculation. We handle this issue by noting that Ωz is

kept sparse if we consider discretized values of the budget surplus shock (εt in eq. 16), which

is the only source of randomness of the model that has a real support.2 Therefore, in order

to speed up the computation, we consider a discretized set of draws for εt (nε values). That

is, for each initial value of the approximate state vector ẑt, we consider nm × nε potential

outcomes (both for Dt+1 = 0 and Dt+1 = 1). This implies that each line of Ωz contains

nm × nε non-zero entries. Hence, when evaluating matrices M0(µq) and M1(µq), we can

focus on these nonzero entries.3

(S3) We iterate step 2 until convergence.

III.2. General case νy ̸= 0 and νπ ̸= 0

In the general case, the previous problem is compounded with that of the SDF specification.

Indeed, in that case, the SDF depends on Dt (see Proposition 7), whose dynamics depend on dt

(and therefore on zt), which itself depends on the pricing of perpetuities, that, in turn, depends on

the SDF. To address this issue, we expand Step S2 of the algorithm presented in Subsection III.1.

Specifically, when considering a given µ
(i)
q , we employ Proposition 7 to compute the SDF speci-

fication that would be consistent with this specific solution for the perpetuity price. That is, we

start the ith iteration of the algorithm of Subsection III.1 (within Step S2) by running another iter-

ative algorithm (iterating eq. II.7) to solve for µ
(i)
u (say). The resulting SDF (eq. II.5) is then used to

evaluate the conditional expectation of (11) along the lines described in Subsection III.1.

2Three sources of randomness underlie this expectation: (a) the budget surplus shock (εt in eq. 16), (b)
changes in macroeconomic regimes (see Subsection 3.4.2), and (c) a potential default (∆Dt = 1).

3For each of the nm × nε outcomes per state ẑt, we need to determine the closest value of ẑt+1. For each
of the resulting values of dt+1 and rt+1, we look for the closest among the nd and nr values of the respective
grids; this defines a unique value of ẑt+1.
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IV. Estimation

This appendix provides details regarding the approach that is implemented to get estimates

of µπ, µy, and Ω, which characterize the dynamics of inflation and output growth (see Subsec-

tion 3.4.2). We gather these parameters in vector Θ.

As explained in Subsection 4.3.1, we achieve our dual objective of capturing both macroe-

conomic fluctuations and long-term values by minimizing a loss function L(Θ) = − logL(Θ) +

d(Θ), where (i) logL(Θ) is the log-likelihood function, which assesses the alignment of the param-

eterization with observed dynamics (the Hamilton, 1986, filter is used to compute this function),

and (ii) d(Θ) is a measure of the distance between model-implied and targeted moments. Here

are some additional details regarding the computation of these two components:

(i) Since the model described in Subsection 3.4.2 is a Markov-switching model, the computa-

tion of the log-likelihood component involves the Hamilton (1986) filter. The state-space

model involves four time series: inflation, real GDP growth, the one-year nominal rate and

the ten-year nominal rate. The sample covers the period 1970-2023.4,5

(ii) As regards the distance function, the moments to match are the following: the average 10-

year zero-coupon yields, the 1y-10y slope of the nominal yield curve, the 2y-10y slope of

the real yield curves, the standard deviation of the 10-year real rate, the average inflation

rate and the average output growth rate. We also include the average 10-year inflation risk

premium in the set of moments to match; this risk premium is the difference between the

average 10-year breakeven inflation rate—i.e., the difference between the 10-year nominal

and real rates—and the average inflation rate. Except for the real rates, for which data start

in 1999, the targets are the empirical moments calculated on the sample covering the period

1970-2023. Given the lack of consensus in the literature regarding the average value of the

inflation risk premium, we set the associated target to zero, which is close to what Breach,

D’Amico, and Orphanides (2020) find for the last 25 years.

To expedite the optimization of the loss function, we calculate the log-likelihood and the

model-implied moments under the assumption that α = 0 (absence of credit risk). This sim-

4While the first two series are extracted from the FRED database (using the mnemonics CPIAUCSL
for the price index, and GDPC1 for the real GDP), nominal zero-coupon yields are based on the database
initially constructed by Gürkaynak, Sack, and Wright (2007) and maintained by the Federal Reserve Bank.

5The standard errors of the measurement errors are as follows: 1% for the two macroeconomic variables,
and 80 basis points for the nominal yields.
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plification significantly streamlines the analysis, as bond returns then depend solely on the mt

Markov chain, and not on dt and rt. Consequently, we can proceed without numerically solving

for the q(.) function, see AppendixIII. (Note however that we do need to solve for the Stochastic

Discount Factor (SDF) using Proposition6.) This approach implies that we are neglecting credit

spreads in the model-implied yields. Nevertheless, this omission should not have strong implica-

tions since, over the past 20 years, U.S. CDS premiums have averaged less than 20 basis points,

which is comparable to our fitting errors (see Figure 5).
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V. Additional results

Table E.7: Performances of debt issuance strategies in stylized versions of the model, µη = 1 × µy and
νy = 0

E(d)
√

V(d) q95(d) E(r)
√

V(r)
√

V(∆d) E(PD) E(spd)

Coupon decay rate χ = 0.2

Demand-driven economy (χ = 0.2)
Nominal 85.62 8.64 98.33 4.15 1.76 3.43 0.95 7.43
ILB 90.60 7.37 101.01 4.95 2.37 3.02 1.60 10.44
GDP-LB 94.69 5.40 99.96 5.64 3.12 2.38 2.31 12.09

Supply-driven economy (χ = 0.2)
Nominal 97.21 7.58 107.66 6.09 0.82 2.37 3.62 18.14
ILB 90.64 7.33 100.99 5.12 1.52 3.02 1.60 10.46
GDP-LB 94.97 5.18 99.98 5.78 0.78 2.35 2.37 12.38

Coupon decay rate χ = 0.9

Demand-driven economy (χ = 0.9)
Nominal 75.54 11.51 92.39 2.66 0.36 3.43 0.37 3.36
ILB 84.40 8.48 96.86 4.04 1.60 2.88 0.77 5.52
GDP-LB 94.66 5.62 100.41 5.65 3.17 2.47 2.34 12.27

Supply-driven economy (χ = 0.9)
Nominal 102.14 8.97 115.28 6.80 0.85 2.29 6.10 29.99
ILB 85.97 8.94 99.49 4.45 2.03 2.87 1.06 7.53
GDP-LB 94.65 5.31 99.99 5.74 0.75 2.50 2.28 12.00

Notes: This table shows performance metrics associated with three different debt issuance strategies; each
strategy consists in issuing a given type of perpetuities: a nominal perpetuity (κπ = 0 and κy = 0), an
inflation-indexed perpetuity nominal (κπ = 1 and κy = 0), and a GDP-indexed perpetuity nominal (κπ = 1
and κy = 1). We consider two different values of χ (the higher χ, the higher the average debt maturity). ’d’
denotes the debt-to-GDP ratio. ’r’ denotes the debt service, including debt indexation (in percent of GDP).
’
√

V(x)’ corresponds to the standard deviation of variable x; ’PD’ stands for ’10-year probability of default’
(expressed in percent); ’spd’ stands for ’10-year credit spread’ (expressed in basis point), ’q95(d)’ is the 95th

percentile of the debt-to-GDP distribution.
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Table E.8: Performances of debt issuance strategies in stylized versions of the model, µη = 0 × µy and
νy = 0.1

E(d)
√

V(d) q95(d) E(r)
√

V(r)
√

V(∆d) E(PD) E(spd)

Coupon decay rate χ = 0.2

Demand-driven economy (χ = 0.2)
Nominal 85.35 7.82 96.52 4.06 1.88 3.01 0.79 15.49
ILB 88.64 5.82 95.59 4.79 2.39 2.38 0.98 15.32
GDP-LB 91.66 6.23 99.34 5.21 3.20 2.43 1.64 19.37

Supply-driven economy (χ = 0.2)
Nominal 93.82 6.01 101.02 5.60 0.52 2.33 2.15 26.91
ILB 88.70 5.92 96.07 4.88 1.37 2.38 1.00 15.60
GDP-LB 91.48 6.08 99.15 5.30 0.70 2.41 1.58 18.91

Coupon decay rate χ = 0.9

Demand-driven economy (χ = 0.9)
Nominal 76.37 11.68 92.95 2.80 0.34 3.03 0.42 9.53
ILB 84.25 7.80 94.88 4.11 1.63 2.33 0.65 10.96
GDP-LB 92.72 6.16 99.71 5.37 3.16 2.37 1.88 22.50

Supply-driven economy (χ = 0.9)
Nominal 95.95 6.86 104.81 5.92 0.41 2.30 3.00 35.75
ILB 84.03 7.82 94.86 4.19 1.87 2.33 0.64 10.81
GDP-LB 93.93 5.59 99.81 5.58 0.67 2.34 2.12 25.21

Notes: This table shows performance metrics associated with three different debt issuance strategies; each
strategy consists in issuing a given type of perpetuities: a nominal perpetuity (κπ = 0 and κy = 0), an
inflation-indexed perpetuity nominal (κπ = 1 and κy = 0), and a GDP-indexed perpetuity nominal (κπ = 1
and κy = 1). We consider two different values of χ (the higher χ, the higher the average debt maturity). ’d’
denotes the debt-to-GDP ratio. ’r’ denotes the debt service, including debt indexation (in percent of GDP).
’
√

V(x)’ corresponds to the standard deviation of variable x; ’PD’ stands for ’10-year probability of default’
(expressed in percent); ’spd’ stands for ’10-year credit spread’ (expressed in basis point), ’q95(d)’ is the 95th

percentile of the debt-to-GDP distribution.
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