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6 Compound auto-regressive processes
and defaultable bond pricing

Alain Monfort and Jean-Paul Renne

6.1 Introduction

Various yield spreads have attracted a lot of attention since the onset
of the current financial crisis. For instance, (a) the spreads between
interbank unsecured rates and the overnight index swaps – the so-called
LIBOR-OIS spreads – gauging market concerns regarding banks’ sol-
vency and liquidity, (b) the spreads between corporate bonds and their
Treasuries counterparts and, more recently, (c) sovereign spreads can all
be seen as thermometers for the intensity of the crisis developments.1

These spreads reflect market-participants’ assessment of the risks ahead
and therefore contain information that is key for both policymakers and
investors. In particular, meaningful information is embedded in the term-
structure of those spreads and in its dynamics. In order to optimally
extract this information, one has to rely on term-structure models. In
several respect, the ongoing financial crisis has highlighted the limits of
many dynamic term-structure models, notably those that are not able to
accommodate non-linearities, stochastic volatilities or switching regimes.

The aim of the present chapter is to propose a general and tractable
strategy to model the dynamics of the term structure of defaultable-
bond yields. To achieve this, we rely on the properties of compound
auto-regressive (Car) processes. The usefulness of these processes in the
building of risk-free (non-defaultable) bond pricing models is now well
documented (see Darolles, Gourieroux and Jasiak, 2006, Gourieroux
and Monfort, 2007, Monfort and Pegoraro, 2007 or Le, Singleton and

We are grateful to Alain Durré and to an anonymous referee for helpful comments and
suggestions. The views expressed in this chapter are ours and do not necessarily reflect the
views of the Banque de France.
1 For the LIBOR-OIS spread, see e.g. Taylor and Williams (2009) or Sengupta and

Tam (2008); for corporate credit spreads, see e.g. Gilchrist and Zakrajšek (2011); for
sovereign spreads see e.g. Borgy et al. (2011), Longstaff et al. (2011) or Monfort and
Renne (2012).
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Da, 2011). On the contrary, the number of papers using Car processes
in defaultable-bond pricing models is small.2

Beyond the search for a good fit to the data, our approach is aimed at
exploring potential credit-risk premia present in bond yields. Such risk
premia are likely to enter bond prices as soon as the underlying credit
risk – that reflects the risk that the issuer defaults – can not be diversi-
fied away and is correlated with investors’ utility. Because of risk premia,
extracting so-called “market expectations” from asset prices under the
assumption that investors are risk neutral is misleading. As regards
risk-free bond yields, risk premia account for the failure of the expec-
tation hypothesis (EH). Under the latter, long-term yields should be
equal to the expectation of future short-term ones (till bond maturity).
Most empirical studies, however, suggest that this assumption does not
hold (see e.g. Campbell and Shiller, 1991) and the difference between
observed long-term bonds and the yields that would prevail under the
EH are attributed to risk premia that are called term premia. The same
kind of hypothesis tends to be rejected in the case of credit spreads: for
instance, Huang and Huang (2002) show that only a small part of aver-
age credit spreads can be accounted for by expectations of default-related
loss rates, pointing to the existence of risk premia associated with credit
risk.

Our framework is consistent with the existence of such credit risk pre-
mia in credit spreads and further, it allows us to study the dynamics
of these. These risk premia stem from the specification of a stochastic
discount factor (sdf). In that context, the physical and the risk-neutral
dynamics of the pricing factors – and notably the default process – do
not coincide. The risk-neutral dynamics is the dynamics of the pricing
factors that would be consistent with observed prices under the (poten-
tially false) assumption that investors are risk-neutral. In our framework,
we can assess the size of the (potential) errors that are implied by assum-
ing that the historical and the risk-neutral dynamics coincide. A typical
example lies in the computation of market-based probabilities of default
(PDs). To get these, the vast majority of practitioners or market ana-
lysts resort to approaches ending up with risk-neutral PDs.3 While
risk-neutral PDs are relevant for pricing purposes, historical ones are

2 See Gourieroux, Monfort and Polimenis (2006), Monfort and Renne (2012) and
(2013), Gourieroux et al. (2012).

3 Most of these methodologies build on Litterman and Iben (1991), see e.g. (amongst
many others) Bank of England (2012), CMA Datavision (2011) and O’Kane and Turn-
bull (2003). Studies resorting to these methods are usually silent about this caveat.
Notable recent exceptions include Blundell-Wignall and Slovik (2010), in an OECD
study, who note: “In the real world, actual defaults are fewer than market-driven default
probability calculations would indicate. That is because market participants demand





9781107044555c06 CUP/CAAD July 24, 2013 21:26 Page-143

Defaultable bond pricing 143

needed (a) if one wants to extract real-world investors’ perception of the
credit quality of the issuer, (b) for the sake of forecasting or more gener-
ally (c) for risk management purposes. Regarding the latter point, note
for instance that value-at-risk measures (VaR) should be based on the
real-world measure and not on the risk-neutral one (see Gourieroux and
Jasiak, 2009).

Being able to identify risk premia is important from a policy perspec-
tive. In particular, in the context of the ongoing financial crisis, Longstaff
et al. (2011) stress the key importance of a better understanding of the
so-called sovereign risk. To that respect, Borri and Verdelhan (2011)
develop a theoretical model that highlights the central place of risk
premia in the derivation of optimal borrowing and default decisions
by sovereign entities. Exploiting the properties of Car processes, Mon-
fort and Renne (2012) show that the present is appropriate to model
the joint dynamics of euro-area sovereign spreads. Their results point
to the importance of the risk premia to account for the dynamics of
these spreads. In particular, during stress periods, these premia translate
into wide deviations between risk-neutral and physical probabilities of
default. In the present chapter, an empirical section supports Monfort
and Renne’s (2012) result by presenting an estimated model of Span-
ish sovereign spreads (versus Germany). Such findings are of significant
interest in the current context where regulators want banks to model the
actual default risk of even high-rated government bonds.4

In order to emphasise the fact that the appealing properties of the Car
processes are needed in the risk-neutral world, but not necessarily in the
historical world, we adopt a back modelling approach (see Bertholon,
Monfort and Pegoraro, 2008), in which the risk-neutral dynamics and
the short rate are specified in the first place, and where the historical
dynamics is obtained through the specification of the stochastic discount
factor. We show that we can obtain quasi-explicit formulas for the bond
prices and therefore for the yields, even if the whole state vector is not
Car in the risk-neutral world. Only the subvector appearing in the spec-
ification of the short rate and of the default intensities has to be Car. In
particular, if we assume that these variables are not directly impacted by
the individual default events, we obtain appealing linear formulas for the
risky yields, both in the cases of zero and non-zero recovery rates.

a risk premium – an excess return – compared to the risk-neutral rate, and that pre-
mium cannot be observed. This makes it difficult to use the above measure [the
risk-neutral PDs] to imply the likelihood of actual defaults in the periphery of Europe
or anywhere else.”

4 Regulators’ views are expressed e.g. by Hannoun (2011) or Nouy (2011). As stressed
by Carver (2012), these changes in regulation reveal the practitioners’ lack of tools to
extract actual default probabilities from market prices.
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Once this modelling of the risk-neutral dynamics and of the short rate
is done, and once possible internal consistency conditions are taken into
account, the modelling of the historical dynamics through the stochastic
discount rate is completely free and, hence, very flexible. In such a con-
text, one can fully benefit from the discrete-time framework to ensure a
good fitting of the data and to model potential interactions between the
pricing factors. Modelling interactions between pricing factors is easier
in discrete time than in continuous time since discrete-time models are
much more flexible than continuous-time models (see e.g. Le et al., 2010
or Gourieroux et al., 2006). Working with discrete-time models neces-
sitates choosing a time unit adapted to the objective of the model and
to the data. A specification for a given time unit implies a dynamics for
all the time units which are multiples of the basic time unit, but not for
the other time units, in particular those which are smaller than the basic
one, contrary to the continuous-time specification. However, the implicit
assumption of the continuous-time approach, namely that the dynam-
ics corresponding to all time units (from the minute to the year, for
instance) can be derived from a unique specification, is highly question-
able. Moreover, the discrete versions of the continuous-time models are
in general intractable, except in simple cases without practical interest,
and are replaced by approximations for which the time consistency is
lost. Finally, the discrete-time models obtained from a discretisation of a
continuous-time model are often poor compared to those which can be
introduced directly, like the ones proposed in this chapter.

The remaining of this chapter is organised as follows. Section 6.2
gives the definition of compound autoregressive processes and develops
a recursive algorithm to compute multi-horizon Laplace transforms of
the processes (which is key to deriving the term structure of yields).
Section 6.3 details the risk-neutral dynamics and its pricing implica-
tions. After having introduced the stochastic discount factor, Section 6.4
derives the implied historical dynamics of the processes. Section 6.5 pro-
vides examples of Car processes. Section 6.6 presents possible estimation
strategies. Section 6.7 proposes an application to the modelling of the
term structure of Spanish sovereign spreads and Section 6.8 concludes.

6.2 Compound autoregressive processes

6.2.1 Definition

Let us define the compound autoregressive (Car) processes. An
n-dimensional process wt is called Car(p) if its conditional log-Laplace
transform ψt−1(u) =ln Et−1eu′wt is of the form
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ψt−1(u) = a1(u)′wt−1 + · · · + ap(u)′wt−p + b(u), u ∈ Rn,

where the ai and b are some R-valued functions and where Et−1
denotes the conditional expectation, given the past values of wt:
{wt−1, wt−2, . . . , w1}. It is straightforward to show that if wt is Car(p),
then (w′

t, . . . , w′
t−p+1)′ is Car(1). Therefore, without loss of generality,

we will focus on Car(1) processes in the following.
As will be shown below (Section 6.5), this class includes a large

number of processes, e.g. Markov-switching Gaussian vector autore-
gressive, autoregressive gamma processes or quadratic functions of
Gaussian processes. The reason why Car processes are central in term-
structure modelling is that there exist quasi-explicit formulas to compute
multi-horizon Laplace transforms. These formulas are provided in the
following subsection.

6.2.2 Multi-horizon Laplace transform

Let us consider a multivariate Car(1) process wt and its conditional
Laplace transform given by u $→ exp

[
a′(u)wt−1 + b(u)

]
. Let us further

denote by Lt,h(Uh) its multi-horizon Laplace transform given by

Lt,h(Uh) = Et
[
exp

(
u′

hwt+1 + · · · + u′
1wt+h

)]
, t = 1, . . . , T ,

where Uh = (u′
1, . . . , u′

h) is a given sequence of vectors.

Proposition 6.1 We have, for any t,

Lt,h(Uh) = exp
(
A′

hwt + Bh
)
,

where the sequences Ah, Bh are obtained recursively by

Ah = a(uh + Ah−1),
Bh = b(uh + Ah−1) + Bh−1,

with the initial conditions A0 = 0 and B0 = 0.

Proof It is straightforward to show that the formula is true for h = 1. If
it is true for h − 1, we get:

Lt,h(Uh) = Et
[
exp

(
u′

hwt+1
)

Et+1
(
exp

(
u′

h−1wt+2 + · · · + u′
1wt+h

))]

= Et
[
exp

(
u′

hwt+1
)

Lt+1,h−1(Uh−1)
]

= exp
[
a(uh + Ah−1)′wt + b(uh + Ah−1) + Bh−1

]

and the result follows.
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6.3 Risk-neutral modelling

6.3.1 Assumptions

The global new information in the economy at date t is wG,t = (w′
c,t,

w′
s,t, d′

t)
′, where wc,t is a vector of common factors (for instance macroe-

conomic variables), ws,t is a vector
(
w1′

s,t, . . . wn′
s,t, . . . wN ′

s,t

)
of specific

variables, wn
s,t being associated with debtor n (for instance a firm or a

country), and dt =
(
d1

t , . . . dn
t , . . . dN

t
)′ is a vector of binary variables, dn

t
indicating whether entity n is in default (dn

t = 1) or not (dn
t = 0) at

time t.
We assume that

(
w′

s,t, d′
t
)′ does not Granger-cause wc,t in the risk-

neutral (Q) dynamics, that dt does not Granger-Q-cause
(
w′

c,t, w′
s,t

)′

and that the
(
wn′

s,t, dn
t

)′
, n = 1, . . . , N are independent conditionally on

(wc,t, wG,t−1).

We introduce the notations wt =
(
w′

c,t, w′
s,t

)′ and wn
t =

(
w′

c,t, wn′
s,t

)′
.

Further, we assume that, for any n, wn
t is Q-Car(1), which implies that

wt is also Q-Car(1), and which includes the case where wt is Car(p) as
mentioned in Section 6.2. Therefore we have

EQ (
exp

(
u′wt

)∣∣ wG,t−1
)

= EQ (
exp

(
u′wt

)∣∣ wt−1
)

= exp
(
aQ(u)′wt−1 + bQ(u)

)
. (6.1)

We also assume that

Q
(
dn

t = 0
∣∣ dn

t−1 = 0, wt
)

= exp
(
−λ

Q
n,t

)
, (6.2)

where

λ
Q
n,t = α0,n + α′

1,nwn
t . (6.3)

The risk-neutral default intensity λ
Q
n,t is close to the conditional default

probability Q
(
dn

t = 1
∣∣ dn

t−1 = 0, wt
)

if it is small. We also assume that the
default state is absorbing.

Finally, we assume that the risk-free short-term rate between t and
t + 1, which is known at t, only depends on wc,t and is given by

rt = β0 + β ′
1wc,t. (6.4)
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6.3.2 Computation of the defaultable bond prices

Assuming first that the recovery rate is zero, the price at time t of a
zero-coupon bond issued by entity n, with a residual maturity (at t) of
h, is

Bn(t, h) = EQ
t

(
exp (−rt − · · · − rt+h−1) (1 − dn

t+h)
)

. (6.5)

We have assumed that wt is Q-Car(1). However, it is easily seen that(
w′

t, dn
t
)′ is not Q-Car.5 Nevertheless, the causality structure described

above implies that the computation of Bn(t, h), for any h, boils down to
the computation of a multi-horizon Laplace transform of wt in which
the coefficients are ordered backward and is therefore easily obtained
(see Proposition 6.1 above).

Proposition 6.2 Bn(t, h) is obtained, for any h, from a multi-horizon
Q-Laplace transform of wt+1, . . . , wt+h in which the coefficients are ordered
backward.

Proof We proceed under the assumption that entity n is alive at date t,
i.e. dn

t = 0. We have

Bn(t, h) = EQ
t

(
exp (−rt − · · · − rt+h−1) (1 − dn

t+h)
)

= exp (−rt) EQ
t

(
exp (−rt+1 − · · · − rt+h−1) (1 − dn

t+h)
)

.

Conditioning with respect to wt+h, we get

Bn(t, h) = exp (−rt) EQ
t

(
exp (−rt+1 − · · · − rt+h−1)

×
h∏

j=1

Q
(

dn
t+j = 0

∣∣∣ dn
t+j−1 = 0, wt+h

))
.

Since dt does not Granger-Q-cause wt and Granger non-causality is
equivalent to Sims non-causality, we can replace wt+h by wt+j in the
generic term of the product above and we get

Bn(t, h)

= exp (−rt) EQ
t

(
exp

(
−rt+1 − · · · − rt+h−1 − λ

Q
n,t+1 − · · · − λ

Q
n,t+h

))

= exp
(
−h(β0 + α0,n) − β̃ ′

1wn
t

)
EQ

t

(
exp

(
−(β̃1 + α1,n)′wn

t+1 − · · ·

−(β̃1 + α1,n)′wn
t+h−1 − α′

1,nwn
t+h

))
, (6.6)

5 See Monfort and Renne (2013).
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where β̃1 = (β ′
1, 0)′. So the expectation term in the previous equation is

a multi-horizon Laplace transform of wn
t+1, . . . , wn

t+h, with a sequence of
coefficients Uh = {u1, . . . , uh} (see Proposition 6.1 for the definition of
the ui) defined by

u1 = −α1,n, uj = −(β̃1 + α1,n), ∀j ≥ 2. (6.7)

Given Proposition 6.1, the previous proposition implies that the yield
Rn(t, h) of a zero-coupon bond issued by debtor n with a residual
maturity of h is of the form

Rn(t, h) = −1
h

log Bn(t, h)

= cn(h)′wn
t + fn(h), (6.8)

where the cn(h), fn(h), h = 1, . . . , H are computed from a unique recur-
sive scheme.6 We get an affine term structure of interest rates. It is
important to stress that the cn(h) and the fn(h) have to be computed
only once (they do not depend on t). Since these pricing formulas do not
require the use of time-demanding simulations, this framework turns out
to be very tractable and, hence, amenable to empirical estimation.

In that framework, it is easily seen that credit spreads, i.e. yields dif-
ferentials between defaultable bonds and their risk-free counterpart (of
the same maturity), are also affine functions of the factors wn

t . Specif-
ically, let us denote by R∗(t, h) the yield of the risk-free bond with a
residual maturity of h. By definition, the risk-free issuer is characterised
by zero default intensity, that is, α∗

0 = 0 and α∗
1 = 0. Using the recursive

algorithm, we get c∗(h) and f ∗(h) coefficients that are such that

R∗(t, h) = c∗(h)′wn
t + f ∗(h),

where only the components of c∗(h) that correspond to wc,t are non-zero.
Thus, the credit spreads associated with entity n are simply given by

Rn(t, h) − R∗(t, h) =
[
cn(h) − c∗(h)

]′ wn
t +

[
fn(h) − f ∗(h)

]
. (6.9)

6.3.3 Non-zero recovery rate

Building on the so-called recovery of market value assumption intro-
duced by Duffie and Singleton (1999), Monfort and Renne (2013) show
that, when the recovery rate is non-zero, the previous pricing machinery
6 By “unique” recursive scheme, we mean that only H recursions are needed to compute

the cn(h) and the fn(h) for any h ≤ H. This is obtained thanks to the fact that the
sequence Uh defined by (6.7) corresponds to the beginning of a longer sequence.
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is still valid if λn
t is replaced by a recovery-adjusted default intensity λ̃n

t .
Specifically, the recovery of market value assumption can be stated in the
following manner: if the issuer defaults between the dates t −1 and t, the
recovery payoff is equal to a fraction ζn,t – that can be a function of wn

t –
of the price that would have prevailed, absent the default of the issuer.
In this context, the recovery adjusted default intensity is given by7

exp(−λ̃n
t ) = exp(−λ

Q
n,t) +

(
1 − exp(−λ

Q
n,t)

)
ζn,t. (6.10)

Obviously, if ζn,t ≡ 0, the recovery-adjusted intensity is equal to the
default intensity and if ζn,t ≡ 1, the bond turns out to be equivalent
to a risk-free bond.

6.3.4 Internal-consistency conditions

The general framework of Section 6.3.1 contains the particular situation
in which some components of wn

t are yields Rn(t, hi), i = 1, . . . , I. In this
case, the coefficients cn(h) and fn(h) appearing in formula (6.8) must
satisfy the conditions

cn(hi) = ei, fn(hi) = 0,

where ei is the selection vector picking the entry of wn
t that correspond

to Rn(t, hi).

6.4 Back to the historical world

6.4.1 Q-dynamics, P-dynamics, sdf and the short rate

The historical and risk-neutral conditional distributions of wG,t given
wG,t−1 have probability density functions (pdf) with respect to a same
measure, these pdf’s are denoted respectively by f P(wG,t

∣∣ wG,t−1) and
f Q(wG,t

∣∣ wG,t−1). Denoting by Mt−1,t(wG,t) the stochastic discount fac-
tor between t − 1 and t, and by rt−1(wG,t−1) the riskfree short rate
between t − 1 and t, we know that the four mathematical objects f P,
f Q, Mt−1,t, rt−1 are linked by the relation8

7 See Monfort and Renne (2013) for the proof.
8 The existence, the unicity and the positivity of the sdf are consequences of the assump-

tions of existence, linearity and continuity of the pricing function and of the assumption
of absence of arbitrage opportunity (see Bertholon, Monfort and Pegoraro, 2007). In the
particular case where wG,t is a vector of prices of basic assets, this implies that the other
prices are functions of the basic prices. This can be viewed as a completeness property.
However, as usual in discrete-time models where the reallocation of portfolios is only
allowed at discrete dates, exact replicating portfolios do not exist in general.
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f Q(wG,t
∣∣ wG,t−1) = f P(wG,t

∣∣ wG,t−1)Mt−1,t(wG,t) exp(rt−1(wG,t−1)),
(6.11)

Since f Q(wG,t
∣∣ wG,t−1) integrates to one, we have

EP
t−1(Mt−1,t) = exp(−rt−1(wG,t−1)), (6.12)

Equation (6.11) can also be written

f P(wG,t
∣∣ wG,t−1) = f Q(wG,t

∣∣ wG,t−1)M−1
t−1,t(wG,t) exp(−rt−1(wG,t−1)),

(6.13)
which implies

EQ
t−1M−1

t−1,t(wG,t) = exp(rt−1(wG,t−1)) (6.14)

or

Mt−1,t(wG,t) =
f Q(wG,t

∣∣ wG,t−1)

f P(wG,t
∣∣ wG,t−1)

exp(−rt−1(wG,t−1)). (6.15)

In particular, (6.15) shows that once f Q and rt−1 are specified, as we
did above, f P can be chosen arbitrarily and (6.15) gives the stochastic
discount factor.

In this chapter, we assume that the sdf Mt−1,t only depends on the
common variables wc,t or, equivalently, that the specific variables ws,t
and the individual default variables dt have no direct impact on Mt−1,t.
In this case f P given by (6.13) is no longer arbitrary. More precisely,
since we have assumed that f Q(wG,t

∣∣ wG,t−1) can be factorized as

f Q(wc,t, ws,t, dt
∣∣ wG,t−1) = f Q

c (wc,t
∣∣ wc,t−1)f Q

sd(ws,t, dt
∣∣ wc,t, wG,t−1).

(6.16)
We see, by integrating both sides of (6.13) with respect to (ws,t, dt) that

f P
c (wc,t

∣∣ wG,t−1) = f Q
c (wc,t

∣∣ wc,t−1)M−1
t−1,t(wc,t) exp(−rt−1(wc,t−1)).

(6.17)
Therefore, (ws,t, dt) does not cause wc,t in the historical world and,
moreover,

f P
sd(ws,t, dt

∣∣ wc,t, wG,t−1) =
f P(wc,t, ws,t, dt

∣∣ wG,t−1)

f P
c (wc,t

∣∣ wG,t−1)

= f Q
sd(ws,t, dt

∣∣ wc,t, wG,t−1).

Hence the following proposition.

Proposition 6.3 Under the causality assumptions defined in Section 6.3.1,
and if Mt−1,t only depends on the common variables wc,t:
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• (ws,t, dt) does not cause wc,t in the historical world;
• the conditional distribution of (ws,t, dt) given (wc,t, wG,t−1) are the same in

both worlds.

The assumptions made in Section 6.3.1 and the second part of the
previous proposition imply that the historical conditional distribution of
ws,t given (wc,t, wG,t−1) is the same as in the risk-neutral world and that
the functional forms of the risk-neutral default intensities given in (6.2)
and (6.3) are also valid in the historical world:

λP
n,t = λ

Q
n,t = α0,n + α′

1,nwn
t . (6.18)

However, it is important to stress that the risk-neutral and the histor-
ical dynamics of λP

n,t (and λ
Q
n,t) are different because those of wt are

different. The fact that λP
n,t = λ

Q
n,t is very important. Indeed, it means

that we can compute historical – or real-world – default probabilities as
soon as we know the historical dynamics of wt and the parameterisations
of the vectors α0,n and α1,n. Given that (a) we observe the historical
dynamics of the yields Rn(t, h) and that (b) these yields are related to
the factors wt through the coefficients cn(h) and fn(h) that depend them-
selves on the αi,ns, it is possible to estimate the vectors α0,n and α1,n and
the historical dynamics of the factors wt (inference will be discussed in
Section 6.6). This is exploited by Borgy et al. (2011) and Monfort and
Renne (2012) who derive historical term structures of probabilities of
default after having estimated some affine-term structure models.

6.4.2 Specification of the sdf

From formula (6.17) we see that once the risk-neutral dynamics of the
common factors wc,t is specified as well as the function rt−1(wc,t−1), we
can choose the historical dynamics of wc,t completely freely, and the sdf
Mt−1,t(wc,t) is obtained as a by-product. However, in order to have a
specification of Mt−1,t(wc,t) which is easily interpretable, it is usual to
choose a particular form, for instance the exponential affine form:9

Mt−1,t(wc,t) = exp
(
−rt−1(wc,t−1) + γ (wc,t−1)′wc,t + '

Q
t−1

(
−γ (wc,t−1)

))
,

(6.19)
where '

Q
t−1 (u) is the risk-neutral conditional log-Laplace transform of

wc,t defined by

'
Q
t−1 (u) = ln EQ

t−1
[
exp

(
u′wc,t

)]
.

9 See Monfort and Pegoraro (2012) for a generalisation to the exponential quadratic case.
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Note that condition (6.14) is automatically satisfied by this specification.
The coefficients γ (wc,t−1), also denoted by γt−1, are interpreted as

the risk sensitivities associated with the risk factors, i.e. the components
of wc,t.

In this case, the historical conditional log-Laplace transform of wc,t is

'P
t−1 (u) = log EP

t−1
[
exp

(
u′wc,t

)]

= log EQ
t−1

[
M−1

t−1,t(wG,t) exp(−rt(wG,t−1)) exp
(
u′wc,t

)]

= log EQ
t−1

[
exp

(
(u − γt−1)′wc,t − '

Q
t−1 (−γt−1)

)]

= '
Q
t−1 (u − γt−1) − '

Q
t−1 (−γt−1) . (6.20)

Hence the following proposition.

Proposition 6.4 If the sdf has the exponential affine form (6.19), the his-
torical dynamics of wc,t is easily deduced from the risk-neutral one, by the
formula

'P
t−1(u) = '

Q
t−1(u − γt−1) − '

Q
t−1(−γt−1).

Also note that setting u = γt−1 in (6.20) results in 'P
t−1 (γt−1) =

−'
Q
t−1 (−γt−1) and replacing u by u + γt−1, we get the reverse relation:

'
Q
t−1(u) = 'P

t−1(u + γt−1) − 'P
t−1(γt−1). (6.21)

In Section 6.2.2, we have assumed that wt = (w′
c,t, w′

s,t)
′ is Car(1).

Therefore, its log-Laplace transform is of the form (6.1):

EQ
t−1

[
exp

(
u′wc,t + v′ws,t

)]

= exp
[
aQ

1 (u, v)′wc,t−1 + aQ
2 (u, v)′ws,t−1 + bQ(u, v)

]
. (6.22)

Since ws,t does not cause wc,t, it turns out that wc,t is also Car(1). Indeed,
the conditional Laplace transform of wc,t given wt−1 = (w′

c,t, w′
s,t)

′ is
obtained by putting v = 0 in (6.22), and since the result does not depend
on ws,t−1, we have aQ

2 (u, 0) = 0 and finally

EQ
t−1

[
exp

(
u′wc,t

)]
= exp

[
aQ

1 (u, 0)′wc,t−1 + bQ(u, 0)
]

= exp
[
aQ

c (u)′wc,t−1 + bQ
c (u)

]
, (say).

Therefore, '
Q
t−1 (u) = aQ

c (u)′wc,t + bQ
c (u) and

'P
t−1 (u) =

[
aQ

c (u − γt−1) − aQ
c (−γt−1)

]′
wc,t−1+bQ

c (u−γt−1)−bQ
c (−γt−1).
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This shows that, in general, the historical dynamics of wc,t is not Car,
except when the previous function is affine in wc,t−1. A sufficient but not
necessary condition is that γt−1 is constant.

6.5 Examples

6.5.1 Autoregressive gamma latent factors

Autoregressive gamma processes are investigated by Gourieroux and
Jasiak (2006). A process yt that follows an autoregressive gamma process
of order one, or ARG(1), can be defined in the following way:

yt
µy

∣∣∣ ỹt ∼ γ (νy + ỹt), νy > 0,
ỹt| yt−1 ∼ P(ρyyt−1/µy), ρy > 0, µy > 0,

where γ and P denote respectively the gamma and the Poisson distri-
butions, µy is the scale parameter, νy is the degree of freedom, ρy is
the correlation parameter and ỹt is the mixing variable. As shown by
Gourieroux and Jasiak (2006), the ARG(1) process is the discrete-time
equivalent of the square-root (CIR) diffusion process. It can be shown
that

yt = νyµy + ρyyt−1 + ηy,t,

where ηy,t is a martingale difference sequence whose conditional variance
(at date t −1) is given by νyµ

2
y +2ρyµyyt−1. Figure 6.1 (upper right plot)

shows the simulated path of an ARG(1) process.
Let us assume that wc,t is a univariate Q autoregressive gamma

(ARG(1)), as well as wn
s,t (n = 1, . . . , N), and that they are Q (and

therefore P) independent. The extension to the multivariate case is
straightforward. The conditional log-Laplace transforms of wc,t and wn

s,t
in the risk-neutral world are respectively:

ρcu
1−uµc

wc,t−1 − νc log(1 − uµc),
ρn

s u
1−uµn

s
wn

s,t−1 − νn
s log(1 − uµn

s ).

If wc,t and ws,t are latent, we can assume that the scale parameters
µc and µn

s are equal to one. It is well-known (see Gourieroux and
Jasiak, 2006) that these processes are positive and that ρc (respectively
ρn

s ) is a (positive) correlation parameter whereas νc (respectively νn
s ) is a

shape parameter. Further, we assume that:

λn,t = α0,n + αc
1,nwc,t + αs

1,nwn
s,t,

rt = β0 + β ′
1wc,t−1.
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Figure 6.1 Examples of Car processes
The upper left panel shows a simulation of a Gaussian process param-
eterised by ϕ = 1, φ = 0.9 and - = 1 (see Section 6.5.2). The upper
right panel displays the simulated path of an autoregressive gamma pro-
cess with µ = 1, ρ = 0.95, and ν = 1 (see Section 6.5.1). The lower left
panel shows the square of a Gaussian AR process (therefore a quadratic
Gaussian process), with ϕ = 0, φ = 0.9 and - = 1 (see Section 6.5.3).
The lower right panel displays the simulated path of a switching Gaus-
sian AR process: there are two regimes, the probability of staying in
each of these two regimes being 95% (i.e. the πi,is are equal to 0.95),
ϕ(z) = [0.1 1]z, /(z) = [0.7 0.5]z and -(z) = [0.01 0.25]z

Since (wc,t, wn
s,t) is obviously Q-Car(1), we can easily obtain the yields

Rn(t, h) as affine functions of wc,t and wn
s,t (using the results of Section

6.3.2 and applying the recursive algorithm proposed in Section 6.2.2).
We know, given the independence of wc,t and wn

s,t and the assumption on
Mt−1,t, that the historical dynamics of wn

s,t is the same as the risk-neutral
one (Proposition 6.3), and that, if we adopt an exponential affine sdf, the
historical conditional log-Laplace transform of wc,t is (using Equation
(6.20))
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ρc

(
u − γt−1

1 − u + γt−1
+ γt−1

1 + γt−1

)
wc,t−1 − νc {log(1 − (u − γt−1))

− log(1 + γt−1)} = ρt−1u
1 − uµt−1

wc,t−1 − νc log(1 − uµt−1)

with ρt−1 = ρc
(1+γt−1)2 and µt−1 = 1

1+γt−1
.

Therefore, if γt−1 is constant, the historical dynamics of wc,t is also
ARG(1) with modified parameters ρ∗

c = ρc
(1+γ )2 , µ∗

c = 1
1+γ , ν∗

c = νc. It is
important to note that since the processes wc,t and ws,t are positive, the
same is true for rt and λt if we take positive coefficients. Moreover, since

Bn(t, h) = EQ
t [−rt+1 − · · · − rt+h − λt+1 − · · · − λt+h],

the function under the expectation is always smaller than one and, there-
fore, all the yields Rn(t, h) = −1/h log Bn(t, h) are positive. The ability of
the ARG processes to model positive yields and spreads is a substantial
advantage of these processes.

6.5.2 Gaussian VAR factors and affine term structures

We assume that the risk-neutral dynamics of (w′
c,t, w′

s,t)
′ is defined by

wc,t = ϕc + /cwc,t−1 + εc,t,
wn

s,t = ϕn
s + /n

scwc,t−1 + /n
s wn

s,t−1 + εn
s,t,

where εc,t and the εn
s,ts are independent zero-mean Gaussian white

noises, with respective variance–covariance matrices -c and -n
s .

This implies that the vectors (w′
c,t, wn′

s,t)
′ and (w′

c,t, w′
s,t)

′ are Gaussian
VAR(1). Again, assuming that rt is an affine function of wc,t and that
λn,t is an affine function of wc,t and wn

s,t, the yields Rn(t, h) are affine
functions of wc,t and wn

s,t.
Let us use an sdf of the form

Mt−1,t = exp
(

−rt−1 + ν′
t−1εc,t + 1

2
ν′

t−1-cνt−1

)

with νt−1 = ν0(zt−1) + ν1(zt−1)wc,t−1. This sdf is obviously exponen-
tial affine in wc,t and satisfies conditions (6.14), i.e. EQ

t−1(M−1
t−1,t) =

exp(rt−1).
The conditional risk-neutral log-Laplace transform of εc,t is

ψ
Q
t−1 = 1

2
u′-cu.
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Using (6.20), it is easily seen that the conditional historical log-Laplace
transform of εc,t is

'P
t−1(u) = 1

2
(u − νt−1)′-c(u − νt−1) − 1

2
ν′

t−1-cνt−1

= −ν′
t−1-cu + 1

2
u′-cu.

Therefore, the conditional historical distribution of εc,t is N (−-cνt−1,
-c) or, in other words, εc,t is equal to −-cνt−1 + ηc,t, where ηc,t is a
white noise N (0, -c) in the historical world and we get:

wc,t = ϕc + /cwc,t−1 − -cνt−1 + ηc,t

= (ϕc − -cν0) + (/c − -cν1)wc,t−1 + ηc,t.

So, with the specification of Mt−1,t chosen above, wc,t is also a Gaus-
sian VAR(1) in the historical world, with arbitrarily modified vector
of constants and autoregressive matrix but with the same conditional
variance–covariance matrix. This model has been extensively used in the
affine term-structure literature.10

6.5.3 Gaussian VAR factors and quadratic term-structures

Let us consider the same risk-neutral dynamics of wt = (w′
c,t, w′

s,t)
′ and

the same sdf as in the previous subsection. The historical dynamics of wt
is also the same as before. Let us now assume that the short rate rt and
the default intensities are some quadratic functions of the factors

rt = β0 + β ′
1wc,t + w′

c,tβ2wc,t,
λn,t = α0,n + α1,nwn

t + wn′
t α2,nwn

t

with wn
t = (w′

c,t, wn′
s,t)

′. It will prove convenient to rewrite rt in the follow-
ing way:

rt = β0 + β̃ ′
1wn

t + wn′
t β̃2wn

t ,

where β̃1 = (β ′
1, 0)′ and β̃2 =

(
β2 0
0 0

)
. Indeed, rt and the λn,ts are then

both quadratic forms in wn
t and they can also be written

rt = β0 + β ′
1wc,t + Trace(β2wc,tw′

c,t),
λn,t = α0,n + α1,nwn

t + Trace(α2,nwn
t wn′

t ).

Since wn
t follows a Gaussian VAR(1), it can be shown that (wn′

t ,
vech(wn

t wn′
t ))′ is a Car(1) process (see Gourieroux and Sufana, 2011),

10 Notably by Ang and Piazzesi (2003) and Joslin, Singleton and Zhu (2011).
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therefore any yield Rn(t, h) will be easily computed recursively as an
affine function of (wn′

t , vech(wn
t wn′

t ))′, that is to say as a quadratic form
in wn

t .11

6.5.4 Switching Gaussian VAR factors

We now introduce a Markov chain zt valued in
(
e1, . . . , eJ

)
, where ei is

the J-vector whose entries are equal to zero, except the ith one, which
is equal to one. We assume that, under Q, zt has a transition matrix
1 =

{
πi,j

}
i,j∈{1,...,J}, where πi,j = Q(zt = ej

∣∣ zt−1 = ei).12 We also assume
that

wc,t = ϕc(zt−1) + /cwc,t−1 + εc,t,
wn

s,t = ϕn
c (zt−1) + /n

s,cwc,t + /n
s wn

s,t−1 + εn
s,t, (6.23)

where, conditionally to the past, εc,t and εn
s,t are independent zero-

mean Gaussian with respective variance–covariance matrices -c(zt−1)
and -n

s (zt−1) in the risk-neutral world. (For the sake of illustration,
Figure 6.1 (bottom-right plot) shows the simulated path of an AR(1)
switching process.)

We can see this new model as an augmented common factor model
with w̃c,t = (w′

c,t, z′
t)

′. It is easily checked that w̃c,t and w̃n
t = (w̃′

c,t, wn′
s,t)

′

are Q-Car(1) and that Rn(t, h) is affine in (w′
c,t, z′

t, wn′
s,t)

′. Let us consider
an exponential affine sdf:

Mt−1,t = exp
(

−rt−1 + ν′
t−1εc,t + 1

2
ν′

t−1-c(zt−1)νt−1 + δ′
t−1zt

)
,

where νt−1 = ν0(zt−1) + ν1(zt−1)wc,t−1 and δt−1 is the function of wc,t−1
and zt−1 whose jth component is equal to log(πi,j/π̃i,j,t) when zt−1 = ei,
where the π̃i,j,ts are functions of wc,t−1 satisfying -j π̃i,j,t = 1 for any i and
any wc,t−1. Note that Mt−1,t automatically satisfies condition (6.14), i.e.
EQ

t−1(M−1
t−1,t) = exp(rt−1).

If zt−1 =ei, the risk-neutral conditional Laplace transform of (εc,t, zt) is

EQ
t−1(exp

(
u′εc,t + v′zt

)
) = exp

(
1
2

u′-c(ei)u
)

.
J∑

j=1

πi,j exp(vj).

11 For any matrix M of dimension q× q, the half-vectorisation of M, denoted by vech(M),
is the q(q + 1)/2 × 1 column vector obtained by vectorising only the lower triangular
part of M.

12 Therefore, the rows of 1 sum to one.
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Therefore, for any zt−1, the conditional log-Laplace transform of (εc,t,
zt) is

'
Q
t−1(u, v) = 1

2
u′-c(zt−1)u +

[
AQ

1 (v), . . . , AQ
J (v)

]
zt−1

with AQ
i (v) = ln

(∑J
j=1 πi,j exp(vj)

)
.

Using the results of Proposition 6.4, the historical conditional log-
Laplace transform of (εc,t, zt) is

'P
t−1(u, v) = '

Q
t−1(u − νt−1, v − δt−1) − '

Q
t−1(−νt−1, −δt−1)

= 1
2

(u − νt−1)′-c(zt−1)(u − νt−1) − 1
2

ν′
t−1-c(zt−1)νt−1

+1
2

[
AQ

1 (v − δt−1) − AQ
1 (−δt−1), . . . , AQ

J (v − δt−1)

−AQ
J (−δt−1)

]
zt−1.

It is straightforward to show that

AQ
i (v − δt−1) − AQ

i (−δt−1) = ln

⎛

⎝
J∑

j=1

πi,j,t exp(vj)

⎞

⎠

= AP
i (v) (say),

which leads to

'P
t−1(u, v) = −ν′

t−1-c(zt−1)u + 1
2

u′-c(zt−1)u

+
[
AP

1(v), . . . , AP
J (v)

]
zt−1.

Therefore, in the historical world, εc,t and zt are conditionally indepen-
dent, the marginal distribution of εc,t is N (−-c(zt−1)νt−1, -c(zt−1)) and
the distribution of zt is defined by the mass points πi,j,t, j = 1, . . . , J if
zt−1 = ei.

Using the form of νt−1 = ν0(zt−1) + ν1(zt−1)wc,t−1, we conclude that
the historical distribution of (wc,t, zt) is given by

wc,t = [ϕc(zt−1)−-c(zt−1)ν0(zt−1)]+[/c−-c(zt−1)ν1(zt−1)] wc,t−1+ηc,t,

where the historical conditional distribution of ηc,t is N (0, -c(zt−1)) and
zt is the non-homogenous Markov chain with transition probabilities
πi,j,t which may be functions of wc,t−1.

The previous equation also shows that, in the historical world, the
autoregressive matrix may also depend on the regime zt−1. Finally, as
mentioned in Proposition 6.3, the historical conditional distribution of
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wn
s,t given

(
w̃c,t, w̃n

t−1
)

is the same as the risk-neutral one and is given by
the second equation of (6.23).

6.6 Inference

The various mathematical objects introduced above are specified para-
metrically and the parameters must be estimated. The estimation
method crucially depends on the observability of the components of
wt = (w′

c,t, w′
s,t)

′. Regarding the yields, we usually observe several of
them: Rn(t, hi), i = 1, . . . , In, n = 1, . . . , N, t = 1, . . . , T , which are affine
functions of the factors wt. Various kinds of interest-rate term structures
can be thought of: sovereign, supra-national, agency, corporate bonds’
yields or swap yields.13

If the wts are observable we can, adding measurement error
terms in Equations (6.8), compute the likelihood of the observations
{wt, Rn(t, hi), i = 1, . . . , In, n = 1, . . . , N} for t = 1, . . . , T and derive
the maximum likelihood estimator (MLE) of the unknown parame-
ters.14 Note that analytical formulas are readily available to compute the
likelihood associated with the processes presented in Section 6.5.

If some components of wt are latent, some filters have to be applied
to compute the likelihood. For instance, if some of the components of
wt are unobserved Gaussian autoregressive processes, the Kalman fil-
ter is the appropriate tool (see de Jong, 2000, among many others).
When the specifications of the intensities include quadratic functions
of Gaussian autoregressive factors (as in Section 6.5.3), the yields are
quadratic functions of the factors. In that case, the standard Kalman
filter has to be replaced by its extended or unscented versions (see
respectively Kim and Singleton, 2012 or Chen et al., 2008), or by the
particle filter (see Andreasen and Meldrum, 2011). The next section
also shows how inversion techniques à la Chen and Scott (1993) can
be resorted to in that case. If the unobserved components of wt follow
Markov-switching Gaussian VAR (as in Section 6.5.4), the Kitagawa–
Hamilton filter can be applied (see Monfort and Pegoraro, 2007).
When the latent factors follow Markov-switching VAR processes, one
can use Kim’s (1994) filter (see Monfort and Renne, 2012). Besides,
Monfort and Renne (2013) show how inversion techniques can be

13 Using approaches consistent with the present framework, Monfort and Renne (2012)
and Borgy et al. (2011) model the term structures of euro-area sovereign bond yields.
Monfort and Renne (2013) and Mueller (2008) model the term structures of yields
associated with different credit-rating classes.

14 The error terms are usually supposed to be mutually and serially independent and
identically normally distributed.



9781107044555c06 CUP/CAAD July 24, 2013 21:26 Page-160

160 Alain Monfort and Jean-Paul Renne

mixed with other techniques, notably the Kitagawa–Hamilton filter, to
simultaneously handle different forms of latency in the dynamics of the
pricing factors. This methodology is applied by Renne (2012).

6.7 Application: credit-risk premia in Italian and Spanish
sovereign yields

6.7.1 Outline

In this section, we use our framework to investigate the dynamics of
sovereign spreads. Specifically, we model the term-structure of spreads
between Spanish government bond yields and their German counter-
part. As in many studies on European sovereign bonds, we consider
German bonds (the so-called Bunds) as risk-free benchmarks. We make
use of the quadratic framework (see Section 6.5.3), the pricing factors
wt are latent and the model is estimated using maximum likelihood tech-
niques. Once we have estimated both the historical and the risk-neutral
dynamics, we compute credit-risk premia. Our results indicate that an
important share of the spreads are accounted for by credit-risk premia,
which is consistent with the existence of an undiversifiable sovereign risk
(see e.g. Longstaff et al., 2011). As in Monfort and Renne (2012), we
finally assess the influence of these risk premia on the deviation between
risk-neutral and physical probabilities of default.

6.7.2 Model

Since we consider a single country, we drop the n index in the following.
In order to keep this illustration simple, as e.g. Pan and Singleton (2008),
Longstaff et al. (2011) or Monfort and Renne (2012), we assume that
the short-term rate is exogenous. In that context, taking into account
non-zero recovery rates (see Section 6.3.3) and using Equation (6.6), it
is easily shown that

B(t, h) = exp(−hR∗(t, h))EQ
t

(
exp

(
−λ̃t+1 − · · · − λ̃t+h

))

(where R∗(t, h) is the risk-free yield of maturity h and λ̃t is the recovery-
adjusted default intensity), which leads to

R∗(t, h) − R(t, h) = −1
h

log EQ
t

(
exp

(
−λ̃t+1 − · · · − λ̃t+h

))
. (6.24)

Therefore, the spread versus the risk-free yield depends on the risk-
neutral dynamics of the default intensities only. Therefore, we do not
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have to specify the dynamics of the risk-free short-term rate. The
recovery-adjusted default intensity is given by

λ̃t = α0 + w′
tα2wt,

where wt is a 2×1 vector of (latent) variables. An important advantage of
this setting is that one can easily ensure that the intensity remains positive
(which is consistent with its interpretation in terms of probabilities, see
Equation (6.2)). For instance, this is obtained if α2 is a positive-definite
matrix and if α0 > 0.

The historical and risk-neutral dynamics of the pricing factors wt
respectively read

wt = /wt−1 + εt, where εt ∼ N P(0, I),
wt = ϕ∗ + /∗wt−1 + ε∗

t , where ε∗
t ∼ NQ(0, I).

Let us denote by St the k × 1 vectors of modelled spreads (for k dif-
ferent maturities). In Section 6.5.3, it is shown that in this framework,
the spreads are quadratic functions of the factors. Considering the kth
spread, that we denote by Sk,t, we have

Sk,t︸︷︷︸
observed spread

= fk + ckwt + w′
tCkwt︸ ︷︷ ︸

modelled spread

+ ηk,t︸︷︷︸
,

pricing error

where the ηk,ts are Gaussian iid error terms.

6.7.3 Estimation

As mentioned in Section 6.6, different filtering techniques can be imple-
mented in order to estimate the model by MLE when the wts are latent.
Here, we resort to inversion techniques à la Chen and Scott (1993).
If the model features M (say) latent variables, this technique consists of
assuming that M of the observed yields (spreads) or, more generally, that
M combinations of observed yields (or spreads), are priced without error
by the model. Then, using the M corresponding pricing formula, one
can solve for the M latent variables from the M perfectly-priced yields.
The remaining yields are then priced with error (the ηk,ts). Appendix A
details the computation of the log-likelihood.

The data are weekly and cover the period July 2008–October 2012
(224 dates). The upper plots of Figure 6.2 show the fit of the model.
Obviously, because of the estimation approach, two spreads are per-
fectly modelled (the 2-year and the 10-year spreads). Regarding the other
two spreads that are used in the estimation – the 3-year and the 5-year
spreads – pricing errors are relatively small (with a standard deviation
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Figure 6.2 Modelling the term-structure of sovereign spreads (Spain
vs. Germany): model fit and credit risk premia
The four upper plots show the model fit and also illustrate the influence
of credit-risk premia. Indeed, the plots report three kinds of spread:
the actual (observed) ones, the (model-based) fitted ones (under Q)
and the “physical” ones (under P). The fitted ones are obtained by
applying Equation (6.24). The physical ones are the ones that would
be observed if the investor were risk-neutral; they are computed in the
same way as the fitted (Q) ones, except that the expectation EQ appear-
ing in Equation (6.24) is replaced by EP (this amounts to setting the
risk sensitivities to zero). The deviation between fitted and physical
spreads corresponds to credit risk premia. The lower plot compares
12-month-ahead forwards of the 10-year spread with 12-month-ahead
expectation of the 10-year spread (under P). Two kinds of (P) expecta-
tion are reported: the model-based ones (solid line) and survey-based
ones (diamonds)

of about 20 basis points). The upper plots in Figure 6.2 also illus-
trate the influence of credit-risk premia. These are discussed in the next
subsection.

6.7.4 Credit-risk premia

Credit-risk premia are defined as the deviation between actual spreads
and the ones that would prevail if the investor were risk neutral, that is,
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if the risk sensitivities were nil (see Section 6.4.2 for a formal definition
of the risk sensitivities). The upper plots in Figure 6.2 show that these
risk premia are sizeable, especially for the longest maturities. This has
various important implications in terms of spread analysis.

First, the fact that the historical and the risk-neutral dynamics of the
pricing factors wt are not the same implies that credit-spread forwards
cannot be interpreted as market forecasts of future spreads.15 This is
illustrated by the lower plot of Figure 6.2. This plot displays 12-month
ahead survey-based forecasts of the Spanish–German spread (source:
Consensus Forecasts) together with 1-year-forward spreads between Span-
ish and German 10-year yields.16 The deviation between the two series is
substantial. This suggests that using forwards of spreads to assess market
expectations regarding the evolution of future spreads is misleading. In
addition, the same plot illustrates the ability of the model to capture this
phenomenon. Indeed, it shows that the model-implied 12-month-ahead
forecast of the spread (thick solid line) is able to reproduce the level and
the main fluctuations in the survey-based forecasts.

Second, the existence of credit-risk premia implies that risk-neutral
probabilities of default – for instance those that are backed out from
CDS quotes following e.g. O’Kane and Turnbull (2003) – do not coin-
cide with the real-world PDs. Formally, it is easily shown that, in our
framework, risk-neutral and historical probabilities of default are given
by (see Monfort and Renne, 2012)

Q
(
dt+h = 1

∣∣ dt = 0, wt
)

=1 − EQ [
exp

(
−λt+1 − ... − λt+h

)∣∣ wt
]

,

P
(
dt+h = 1

∣∣ dt = 0, wt
)

=1 − EP [
exp

(
−λt+1 − ... − λt+h

)∣∣ wt
]

.
(6.25)

The linearization of Equation (6.10) leads to λt ≈ λ̃t/(1 − ζt).
Then, assuming that the recovery rate is constant and equal to ζ , the
previous probabilities are easily computed using Proposition 6.1 (the
expectation terms in Equation (6.25) being multi-horizon Laplace trans-
forms of wt). Based on a constant recovery rate of 50%, Figure 6.3
compares both kinds of default probability.17 These computations sug-
gest that real-world probabilities of default are far lower than their
risk-neutral counterpart, consistently with the findings of Monfort and
Renne (2012).

15 See e.g. Cochrane and Piazzesi (2005) for an investigation of this phenomenon in the
non-defaultable case.

16 This forward rate (in continuously-compounded terms) is simply given by (11S(t, 11)−
S(t, 1))/10.

17 This recovery rate roughly corresponds to the average of the recovery rates observed
for sovereign defaults over the last decade (see Moody’s, 2010).
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Figure 6.3 Historical vs. risk-neutral probabilities of default
The upper plots present estimates of (market-perceived) probabili-
ties of a Spanish-government default. Risk-neutral probabilities (solid
lines) are compared with physical ones (dotted lines). The lower plots
present, for three differed dates, the term-structures of risk-neutral and
physical probabilities of default (example: for maturity m, the plots
show the probability of a Spanish-government default before m years).

6.8 Conclusion

In this chapter, we investigated the potential of Car processes to model
the dynamics of defaultable-bond prices in a no-arbitrage framework.
We showed that these processes make it possible to account for sophis-
ticated dynamics of yields and spreads while remaining tractable. In
this intensity-based framework, bond prices and yields are obtained in a
quasi-explicit form, thanks to a simple recursive algorithm. This ensures
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that the models building on this framework are amenable to empirical
estimation. Several examples of Car processes were provided (regime-
switching, autoregressive gamma and quadratic Gaussian processes).
These processes can reproduce various key features of observed yields
such as non-linearities or stochastic volatilities. In addition, some of
these processes can ensure positivity of yields (and/or spreads), which
is crucial in the (current) context of extremely low short-term rates.

As an illustration, we exploited our framework to investigate the
dynamics of the term structure of Spanish sovereign spreads (vs. Ger-
many). After having estimated the model, we exhibited credit-risk
premia, that are defined as those differences between observed credit
spreads and the ones that would prevail if the investor were risk neu-
tral. The results suggest that these risk premia are sizeable. This has
important implications. Notably, it results in the fact that risk-neutral
probabilities of defaults (backed out from spreads under the assump-
tions that investors are risk-neutral) overestimate physical, or real-world,
probabilities of default.

Appendix A Computation of the likelihood (model presented
in Section 6.7)

Let S1,t be a 2 × 1 subvector of St which is modelled without pricing
error and let S2,t be the vector of the remaining spreads in St. In other
terms, ηk,t is equal to 0 if k is one of the two maturities corresponding
to S1,t and an iid Gaussian pricing error otherwise. The two equations
associated with S1,t can be inverted in order to recover the two latent
factors wt.18 Let us denote by qθ (wt, θ) the function that assigns to the
latent variables wt the perfectly-priced spreads S1,t. The general term of
the likelihood function is the conditional distribution of St given St−1,
which is

fS
(
St| St−1

)
=

∣∣∣∣∣det
∂q−1

θ (S1,t)
∂S1,t

∣∣∣∣∣ fS2,w
(
S2,t, wt

∣∣ St−1
)

=
∣∣∣∣∣det

∂q−1
θ (S1,t)
∂S1,t

∣∣∣∣∣ fS2

(
S2,t

∣∣ wt, St−1
)

fw
(
wt| St−1

)

=
∣∣∣∣det

∂qθ (wt)
∂wt

∣∣∣∣
−1

fS2

(
S2,t

∣∣ wt
)

fw (wt| wt−1) . (A.26)

18 At each iteration (new date t), the numerical procedure uses the previously obtained
(date t −1) factors as initial conditions. This rules out the possibility of obtaining some
jumps in the estimated factors that would be due to the existence of several solutions
to this system of equations.
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The computation of the three terms of the right-hand side of Equation
(A.26) is straightforward. The last two are Gaussian distributions. The
first one is the inverse of the determinant of a multivariate quadratic
function.

Appendix B Estimated model

Parameter estimates are obtained by maximising the log-likelihood com-
puted as detailed in Appendix A. The model is estimated in two steps. In
the first step, all parameters in α0, α2, /, ϕ∗ and /∗ are estimated. Then,
the statistical significance of the parameters is assessed. Those parame-
ters that are not statistically different from zero are then set to zero and
excluded from the second step of estimation. The resulting estimated
model reads

λt = 10−4

⎛

⎝4.83
(0.44)

+ w′
t

⎡

⎣
4.71

(0.022)
3.65

(0.012)
3.65

(0.012)
2.83

(0.014)

⎤

⎦ wt

⎞

⎠ ,

wt =

⎡

⎣
0.995
(0.0001)

0
(−)

0
(−)

0.992
(0.0000)

⎤

⎦ wt−1 + εt, εt ∼ N P(0, I),

wt =

⎡

⎣
0

(−)
−0.028
(0.0001)

⎤

⎦ +

⎡

⎣
1.0

(0.0000)
−0.007
(0.00005)

0
(−)

0.995
(0.00001)

⎤

⎦ wt−1 + ε∗
t , ε∗

t ∼ NQ(0, I).

The standard deviations of the parameter estimates are reported in
parentheses. The standard-deviation estimates are based on the outer-
product estimate of the Fisher information matrix.
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